
Atomikos™ Transactions
API Specification Guide

Atomikos Transactions API Specification Guide
Copyright © 2006-2016 Atomikos

iii

Table of Contents
1. Preface .. 1

1.1. Who Should Read This Guide ... 1
1.2. Contents .. 1
1.3. Standards Compliance .. 1
1.4. Acknowledgments ... 1

2. Atomikos Transactions API Overview ... 3
2.1. Configuring and Starting/Stopping the Transaction Service ... 3
2.2. Creating Transactions .. 3

2.2.1. CompositeTransactionManager .. 4
2.2.2. ExportingTransactionManager ... 5
2.2.3. ImportingTransactionManager ... 5
2.2.4. Propagation ... 6
2.2.5. Extent ... 6

2.3. Atomikos' CompositeTransaction Model ... 6
2.3.1. CompositeTransaction ... 7
2.3.2. CompositeCoordinator ... 9
2.3.3. RecoveryCoordinator ... 10

2.4. Plug-In Interfaces .. 10
2.4.1. TransactionServicePlugin ... 10
2.4.2. Synchronization .. 10
2.4.3. SubTxAwareParticipant .. 10
2.4.4. Participant ... 11
2.4.5. RecoverableResource ... 12
2.4.6. EventListener ... 12

2.5. Exceptions ... 12
2.5.1. Checked Exceptions .. 12
2.5.2. Runtime Exceptions .. 13

3. Programming with the Atomikos Transactions API .. 14
3.1. Basic Level .. 14

3.1.1. Exporting an existing transaction ... 14
3.1.2. Importing an existing transaction ... 15

3.2. Intermediate Level ... 16
3.2.1. Subtransaction Commit .. 16
3.2.2. Subtransaction Rollback ... 17
3.2.3. Adding Synchronization Implementations .. 18
3.2.4. Adding SubTxAware Implementations .. 18
3.2.5. Adding Participant Implementations ... 19

3.3. Advanced Level .. 19
3.3.1. The Big Picture .. 19
3.3.2. Implementing Lock Inheritance ... 20

4. The Administration API .. 23
4.1. Administration API Overview ... 23

4.1.1. LogControl .. 23
4.1.2. LogAdministrator .. 23
4.1.3. AdminTransaction ... 23

4.2. Interactions with the Transaction Service ... 24
A. References ... 25

iv

List of Tables
3.1. Subtransaction commit ... 16

1

Chapter 1. Preface
1.1. Who Should Read This Guide
You should read this guide if:

• You want to use Atomikos for explicitly importing or exporting transactions to other server VMs.

• You want to use the Atomikos API to make your own applications transactional and two-phase commit aware.

• You want to use nested transactions.

• You want to implement a data source that can take part in nested transactions and that offers lock inheritance.

• You want to understand the design of the Atomikos core API.

• You want to offer customized administration tools for the transaction engine.

You do NOT have to read this guide if you just want to use JTA transactions within one VM using JDBC/
JMS.

1.2. Contents
This user guide explains how to use Atomikos Transactions API. This guide is a supplement to the basic user
guide in the particular release you are using. As such, whenever this guide refers to the basic guide it is meant the
basic user guide for your particular release. Although different Atomikos product releases each have their own
particularities, the Atomikos transaction API is a shared feature for all of them.

1.3. Standards Compliance
The core Atomikos Transactions API is not a vendor-independent standard. It is a core API for the Atomikos
products and as such it has been designed to fit exactly with Atomikos' vision on transactions and transactional
functionality. This does not mean that we do not like standards - on the contrary: we offer standards-compliant
products that essentially wrap the internal core API to match standards such as JTA, JDBC, JMS and others.

The core API has been designed to make it as easy as possible to adapt to new and evolving standards for
transaction processing (like TCC today, and RMI/IIOP or WS-AT in the past). This is because we focused
on the bare essentials of transaction management: the functionality and information that no transaction
system can do without.

1.4. Acknowledgments
The Atomikos Transactions API has been designed around a lot of past work, by Atomikos and by others. A part
of the design is similar to CORBA's OTS, with major differences in the explicit support for distributed transactions,
heuristic terminations and the non-classical interpretation of rollback/commit. Also, the Atomikos Transactions API
was designed to be pure Java without the need for IDL data types.

Preface

2

The basis of this API goes back to ETH Zurich, Switzerland: the basic research and prototypes that formed
the starting point of our design were realized in the group of Prof. Gustavo Alonso. Back in the year 2000, we
implemented a webservice transaction system avant la lettre. Not surprisingly, this is one of the major strengths of
the Atomikos API right now.

3

Chapter 2. Atomikos Transactions API
Overview
The overview of the API is structured into the following main parts:

• Configuring and Starting/Stopping the Transaction Service

• Creating Transactions

• Atomikos CompositeTransaction Model

• Plug-In Interfaces

• Exceptions

The first part deals with startup and configuration of the transaction service. The second part is about creating,
importing or exporting transactions. The third part explains the structure of the core API's transaction model. The
fourth part explains what external 'hooks' there are to the APIs. The interfaces in this part are those that users can
implement to extend the transactional functionality of Atomikos products. The last part explains the exceptions
defined and used in the API.

Unless explicitly state otherwise, all API components are in the package com.atomikos.icatch.

2.1. Configuring and Starting/Stopping the
Transaction Service
The configuration and startup/shutdown of the transaction service core can be done via the classes and interfaces in
package com.atomikos.icatch.config. Even if you start the transaction service via other ways such as JTA, the classes
in this package are still involved underneath.

The configuration API contains the com.atomikos.icatch.config.UserTransactionService interface
(with default implementation in class com.atomikos.icatch.config.UserTransactionServiceImp) and the
com.atomikos.icatch.config.Configuration class that do most of the work. Here you can add transaction-aware
resources, transaction service plugins and log administrators (all these are explained in more detail later in this
guide).

2.2. Creating Transactions
Before any transaction exists, it has to be created or imported. An overview of the API is shown in the following
picture:

Atomikos Transactions API Overview

4

2.2.1. CompositeTransactionManager

The transaction manager is where you can create new transactions and associate a thread with a transaction. It also
allows your application to retrieve the current transaction, after you have created one. Note that this is thread-safe: if
you have multiple threads running concurrently, then each thread can create its own transaction and will be able to
retrieve only that transaction which it created. The transaction manager will behave as a 'private' manager for each
thread of your application.

The CompositeTransactionManager is a core interface that is reused by the JTA transaction manager
implementation of Atomikos. Whenever you begin a JTA transaction through the JTA interfaces, this will
also cause a corresponding thread association for the underlying CompositeTransactionManager. In this
way, these two transaction manager instances each provide a different API view on the same underlying
transaction.

The following methods are provided:

Atomikos Transactions API Overview

5

• createCompositeTransaction: this method creates a transaction for the application. When it returns, you
will be able to retrieve the transaction object through getCompositeTransaction within the current thread.
Atomikos supports nested transactions, meaning that a transaction can be created within another one. This
means that calling this method twice in the same thread (without commit/rollback in between) will create a
nested transaction, whose final commit will coincide with the commit of the first transaction you created. The
thread association is terminated by calling either suspend, or commit/rollback for the composite transaction (as
explained below).

• getCompositeTransaction: if called without arguments, then this method returns the transaction object for the
calling thread, or null if there is no active transaction. The transaction object is needed in order to add work to it:
all the work that needs to be part of this transaction must be explicitly added to it.

If called with a string argument, then this method returns the transaction with the given ID (if any). This variant
is useful for retrieving a suspended transaction that needs to be resumed.

• suspend: this method is useful if an active transaction exists, but you need to start a new transaction that is
independent. By suspending the current transaction, you dissociate it from the current thread and are free to
begin a new one, whose commit or rollback will not affect the current transaction. If you want to have another
thread continue the current transaction then this method can be used (in combination with resume) to 'pass on'
the transaction to another thread.

• resume: this method (re-)associates the calling thread with an existing transaction (typically one that was
suspended first). If you continue a transaction in a different thread, then that thread should call this method with
the transaction as an argument. If you have done some intermediate work in a different transaction, then this
method can be called to resume the original transaction.

2.2.2. ExportingTransactionManager

The ExportingTransactionManager is where a client that runs with Atomikos can get a Propagation instance for
adding it to a remote call. It is also the place where any returned Extent can be added to the client's transaction.

Even if you created a JTA transaction through the JTA TransactionManager in the AtomikosJTA API, then
you can still export that transaction by using this interface. This is because all transaction manager classes
merely represent different views on the same underlying transaction object.

• getPropagation: this method returns a propagation for the transaction that is associated with the current thread.
The Propagation can be shipped to remote servers.

• addExtent: call this method for a returned Extent, but only if your application wants the remote work to be
committed in the end. If you ignore the returned extent of a remote call then the corresponding work will
eventually be rolled back by the remote transaction service (due to timeout).

2.2.3. ImportingTransactionManager

The ImportingTransactionManager is the interface that a server uses when it wants to become part of a remote
client-side transaction (whose Propagation was received as part of an incoming invocation). It is also where an
Extent can be retrieved in order to return that Extent to a remote client (as part of the return data of a finished call).

Even if you are using the regular JTA API in the rest of your application, you can still use this interface to
import a Propagation received from a remote VM. This will create a local transaction that will immediately

Atomikos Transactions API Overview

6

associate the thread with a JTA Transaction instance as well, accessible via the JTA API! Of course, if you
prefer to use the Atomikos Transactions API then the CompositeTransactionManager will also work.

• importTransaction: if your application receives a Propagation as part of an incoming request's parameters, then
you can use this method to associate the current thread with the transaction at the client side. This association is
done in the form of a subtransaction that is local to the server, and a descendant of the client's transaction. Any
resources accessed can later become subject to commitment of the root transaction (if the Extent is received by
the client after the call is done). As part of the import, you also have to specify two boolean parameters that are
not part of the client's request. The first one is orphancheck: if you want to use Atomikos' built-in support for
detection of pending (lost) transactions then you should specify true here. The second parameter is heur_commit;
this specifies your preference when the transactional work for this import remains indoubt for too long. If
you specify a value of true then a possible indoubt will be resolved with a heuristic commit by the transaction
service. If you specify false the a heuristic rollback will be done instead. Heuristic decisions are always made
after timeout of an indoubt transaction.

• terminated: call this method to indicate that an imported transaction's thread is about to be finished, and wants
to perform subtransaction commit or rollback. This method will dissociate the subtransaction from the current
thread and return the Extent that should be shipped to the client.

2.2.4. Propagation

The Propagation interface is meant for propagation of transactions from one server VM to another (assuming
that both server VMs have Atomikos running in them). The propagation contains the necessary information to
create (at the receiver) a subtransaction of the sender's transaction and also propagates the settings for timeout and
concurrency of subtransactions. It is unlikely that your application will ever need to manipulate this interface; all
that typically needs to be done is retrieving it at the sender and registering it with the transaction service of the
receiver. This usually means that it has to be passed as a parameter to any remote calls that you make.

2.2.5. Extent

The Extent interface is the counterpart of the Propagation: it should be returned from a server that has previously
imported a propagation. The information it contains is essential for the server's subtransaction work to become
part of the two-phase commit termination of the root transaction. Like the Propagation, this interface should not be
manipulated by your application: retrieving it at the server and registering it at the client's transaction service are all
that is needed. This implies that you will have to account for this information to be contained in your remote server's
returned data set.

For remote calls that fail, you should not care about any returned Extent. Neglecting the Extent implies
that the work done at the server (if any) will not become part of the root transaction's commit, meaning it
will timeout and rollback. Note that this behaviour is consistent with application-level semantics for such
scenarios. Using this mechanism ensures that failed remote calls do not affect the persistent state of the
remote server (a property that is missing in most regular RPC-style interactions).

2.3. Atomikos' CompositeTransaction Model
This section discusses the component classes that are related to individual transactions. Instances of these classes are
provided by Atomikos. The big picture is shown in the figure below...

Atomikos Transactions API Overview

7

2.3.1. CompositeTransaction
The transaction interface allows manipulation of an active transaction. The most important role of this interface is
to add work to the scope of the transaction, thereby making the outcome of the work depend on the outcome of the
transaction. In addition, this interface allows comparison of different transactions, which can be used by resources
to determine if and when different accesses should see each other's updates. The functionality of the transaction
interface is discussed below.

The CompositeTransaction interface is the transaction kernel's notion of a transaction. It is
the underlying transaction model for all other APIs. For instance, if you use our JTA then
the javax.transaction.Transaction instances that you create will correspond to exactly one
CompositeTransaction in the core.

• isRoot: true if and only if the instance is a root transaction (i.e., a top-level transaction: one that has no parent
transaction).

• getLineage: this method returns a stack of ancestors, or an empty stack for a root transaction. The stack of
ancestors can be useful for implementing lock inheritance among related transactions: a resource can do this by
adding itself as a SubTxAwareParticipant to the appropriate parent in case related transactions are competing for
access to common data.

Whenever a propagation is imported in a VM, the transaction service automatically creates a new
subtransaction for the imported transaction. This subtransaction then becomes associated with the
importing thread. Depending on the particular propagation policy, an implementation may limit the lineage
information to the root transaction only. So for imported transactions, you should not count on all ancestor
transactions always being represented in the lineage.

• getTid: a getter for the unique ID of the transaction.

• isAncestorOf: this method tests if one transaction is an ancestor of another. Resources that want to implement
lock inheritance can use this method.

Atomikos Transactions API Overview

8

• isDescendantOf: this method tests if one transaction is a descendant of another. Resources that want to
implement lock inheritance can use this method.

• isRelatedTransaction: this method tests if one transaction is a child of the same root as another one. Resources
that want to implement lock inheritance can use this method.

• isSameTransaction: this method tests if one transaction represents the same work as another one. Resources can
use this test to optimize their locking strategy: when an access to locked data is attempted, this method can be
used to test if the new access is on behalf of the same transaction as the one that has set the lock.

• getCompositeCoordinator: to get the coordinator interface for this transaction. The coordinator represents
the common root part for different local transactions: different local subtransactions of the same root (either
a remote root or a local one) will have the same coordinator instance. This coordinator represents the overall
work done by all subtransactions of the same root, and all this work is subject to the same two-phase commit
termination (as required by subtransaction semantics).

• addParticipant: a more powerful variant of the enlistResource in JTA. This method serves to add work to the
transaction, but the exact definition of what 'work' is, is much wider in Atomikos' APIs. See the Participant
interface for more details.

• registerSynchronization: call this method to register a synchronization object that will receive callbacks on
transactional (two-phase commit) termination. Note: the registration of a synchronization does not survive
crashes! Consequently, you should not use this method to perform crash-recovery related tasks; if that
functionality is needed then you should use the Participant interface instead.

• addSubTxAwareParticipant: with this method, you can register for the commit/rollback events of a
(sub)transaction. Note: the name of this interface can be somewhat misleading: typical usage consists in
resources waiting for some transaction's parent to finish because a related transaction wants to access the same
data. By waiting for the right parent to commit/rollback, true lock inheritance can be implemented.

This callback mechanism also works for remote transactions, i.e.: CompositeTransaction instances that are
part of the lineage and that represent a transaction that was imported from a remote server.

• isSerial: an optimized mechanism for implementing lock inheritance is merely testing if the transaction is being
done serially or not. This property can only be set at the root level, and resources can allow shared access by
two related transactions if they are serial. This is safe because the absence of concurrent behaviour among
subtransactions also means that there is no need to protect them from corrupting each other's data (by concurrent
interference).

• isLocal: tests if the transaction represents local work, or is an imported instance instead. The Atomikos core
always creates a new and local subtransaction for each imported transaction. The imported transaction is
represented (in the lineage) by a proxy that also adheres to the CompositeTransaction interface. For proxy
instances, isLocal will return false.

• createSubTransaction: for the creation of a subtransaction of the corresponding transaction.

This method creates a subtransaction, but it does not associate the thread to the new subtransaction.
In particular, calling getCompositeTransaction() on the CompositeTransactionManager will
still return the old transaction. If you need to associate the thread with the new subtransaction,
either use CompositeTransactionManager.resume or create the subtransaction by calling
CompositeTransactionManager.createCompositeTransaction.

Atomikos Transactions API Overview

9

• setSerial: when called for a root transaction, this method will mark the entire transaction tree (the root and its
descendants) as serial, meaning that subtransactions should not execute concurrently. This allows easy lock
inheritance to be offered by resources. It should be noted that it is up to the application to respect the required
serial behaviour; Atomikos can not do a lot more to prevent malicious applications from tampering with the
required behaviour. The only safety provided is that once set, the serial flag can not be unset. Also, the value of
this flag is included in any Propagation instance.

• getLocalSubTxCount: this method returns the number of local subtransactions that were locally started.

• setRollbackOnly: calling this method marks the transaction so that its only possible outcome is rollback.

• setTag: with this method, the high-level description of the work of this (sub)transaction can be set. After commit
of the subtransaction, this tag will then become part of the returned list of tags upon calling getTags in the
CompositeCoordinator interface.

• getExtent: returns the extent of the subtransaction; this represents the remote work done on behalf of the
subtransaction. The system uses this information for two-phase commit purposes.

• getTimeout: gets the (remaining) timeout of the transaction.

• set/getProperty: Set/get meta-information (properties) on the transaction. Properties can be used to distinguish
different types of transactions, like ACID transactions or activities. Properties are inherited by subtransactions
and may be propagated along with remote calls.

• rollback: performs rollback of the effects of the (sub)transaction.

• commit: commits the effects of the (sub)transaction.

For a root transaction, calling commit will trigger two-phase commit among all participants. For a
subtransaction, calling commit will merely cause the commit of that subtransaction, the work still being
subject to a later two-phase commit triggered by a commit at the level of the root transaction. The rollback
of a subtransaction will merely trigger rollback of all its registered Participant instances, without affecting
any other subtransactions.

2.3.2. CompositeCoordinator
The composite coordinator represents the common two-phase commit part of all local subtransactions of the same
root transaction. By nested transaction semantics, these subtransactions' Participant instances must all be subject to
the same two-phase commit outcome that determines the permanent commit of the root and all its subtransactions.
The composite coordinator represents this fact.

• getCoordinatorId: this method returns the globally unique ID of the root transaction (the top-level transaction),
also called the coordinator.

• getRecoveryCoordinator: this method returns a handle that can be useful for resolving remaining in-doubt
participants. When a prepared participant remains in-doubt, it can ask 'its' RecoveryCoordinator for replay of
two-phase commit outcome.

Subtransactions that are rolled back will not affect their CompositeCoordinator instance: Participant
instances that were added to a subtransaction prior to that subtransaction's rollback will not take part in the
global two-phase commit protocol.

Atomikos Transactions API Overview

10

2.3.3. RecoveryCoordinator

Prepared participants that remain in-doubt can use the RecoveryCoordinator instance (returned during
addParticipant or obtained from the CompositeCoordinator) to try to resolve their ignorance of the two-phase
commit outcome.

• replayCompletion: the participant instance can call this method with itself as an argument in order to try and
resolve its in-doubt status. Note that this method is not guaranteed to work; in particular, if the party that
the recovery coordinator represents has become unreachable (due to network failures, for instance) then the
participant will not learn the outcome even though it uses this method. In that case, the participant is free to
apply a heuristic termination.

• getURI: gets the unique URI identifier for this coordinator.

2.4. Plug-In Interfaces

2.4.1. TransactionServicePlugin

This interface (package: com.atomikos.icatch) is useful for applications that want to be notified of transaction
service startup and shutdown. Instances that implement this interface can be registered via the Java JDK's
ServiceLoader mechanism. The following methods must be implemented:

• beforeInit/afterInit: called during the startup of the transaction service, once before and once after initialization
of the recovery service.

• afterShutdown: called after shutdown.

2.4.2. Synchronization

This interface is a means to register an application-level callback; it allows the application to be notified upon
commit events. You can use this functionality by implementing this interface in your application.

Note: synchronizations are not persistent; after a crash, any recovered transactions' synchronizations will be
lost. This is not in contradiction with their intended usage.

• beforeCompletion: this method is called before the transaction will start its commit. A typical usage of this
method is to write pending updates to the database.

• afterCompletion: this method is called after the commitment was done, and indicates whether it was successful
or not.

2.4.3. SubTxAwareParticipant

This interface is useful for applications that want to implement full lock inheritance according to the nested
transaction model. Such applications can use the callback methods in this interface to trigger the granting of locks to
related, concurrent transactions.

• committed: this method is called when a transaction that this participant was registered to has committed. The
argument specifies which transaction that is (useful in case this instance registered with multiple transactions).

Atomikos Transactions API Overview

11

• rolledback: this method is called when a transaction that this participant was registered to has rolledback. The
argument specifies which transaction that is (useful in case this instance registered with multiple transactions).

2.4.4. Participant
The Participant interface is the core representation of any transactional work done within the scope of a
CompositeTransaction. It represents the core functions that the transaction kernel expects in order to peform its two-
phase commit protocol. Implementations of this interface may choose to initiate heuristic termination on their own;
this would lead to heuristic exceptions during two phase commit.

The participant mechanism is subject to several Atomikos patents and pending patents not included in the
license for this product.

• prepare: called during the prepare phase. The instance should prepare according to two-phase commit semantics.
If this method returns without exceptions then a YES vote is assumed by the transaction manager. For instances
that represent read-only access, READ_ONLY can be returned to indicate that no later commit or rollback
should be called. If the instance can not prepare successfully (for instance, because internal timeout has rolled
back the work) then a RollbackException should be thrown. Internal failures may lead to a heuristic exception
(as explained in the Exceptions section).

• rollback: called when the transaction manager has decided that the work should be rolled back. Implementations
can return a list of HeuristicMessage instances that have been added. How such messages have been added to the
Participant falls outside the scope of this specification; the transaction manager does not care where they come
from. Internal timeouts or errors may lead to any of the declared heuristic exceptions being thrown, provided that
a previous prepare has been performed.

• commit: called to signal a commit decision by the transaction manager. Implementations can return a list of
HeuristicMessage instances that have been added. If there is only one Participant instance then this method will
be called as part of one-phase commit (without prior prepare). In that case, internal timeout may have lead to
rollback already, which triggers a RollbackException. In two-phase commit cases this method will be called after
a prior prepare. In those cases, an internal heuristic timeout may lead to any of the declared heuristic exceptions.

• forget: called in case of a heuristic termination; this signals to the underlying implementation that any remaining
logged state data on behalf of two-phase commit can be discarded.

• setCascadeList: this method is called prior to prepare, in order to deal with the orphan detection information that
the core passes on. This method should normally be left empty by implementations other than the core's internal
implementation.

• setGlobalSiblingCount: this method is also called prior to prepare, in order to deal with the orphan detection
information that the core passes on. This method should normally be left empty by implementations other than
the core's internal implementation.

• getURI: Get a unique URI identifier for this participant, or null for local instances.

The Atomikos APIs were designed to be capable of dealing with generalized rollback scenarios such as
compensation. Therefore, you should not be mislead by the traditional meaning of rollback (which is
classically interpreted as state-based restoration of a before-image of data). The APIs and the transaction
service do not care about how you perform rollback, and the transaction service is in fact nothing less than
a general two-phase commit engine. If you decide to implement a Participant for your application's needs,
then feel free to implement rollback any way you like.

Atomikos Transactions API Overview

12

2.4.5. RecoverableResource
This interface (in package com.atomikos.datasource) enables the transaction core to find all of the resources it needs
to recover.

• setRecoveryService this method is called when the resource is initialized by the transaction service. The
corresponding argument is a handle to the transaction service that the resource can use to provide help during
recovery. In particular, the resource can use the recovery service to trigger recovery, and it can also find out the
unique name of the transaction service (useful in determining what internal resource transactions are within the
scope of recovery by this transaction service). It is assumed that the resource uses some internal mechanism to
identify its resource transactions based on this unique name.

• recover this method triggers recovery of this resource.

• getName the unique name of the resource.

• isSameRM true iff the two instances represent the same resource. Resources are the same if they recover the
same set of Participant implementations.

• close called by the transaction service to indicate that the transaction core is about to shut down. This method
can be used to cleanup internal resources such as connections or files.

2.4.6. EventListener
This interface (in package com.atomikos.icatch.event) allows third-party event listeners to react to specific
transaction-related events (defined in package com.atomikos.icatch.event.transaction) such as transaction creation,
abort, commit, heuristic, and read-only termination. Implementations are discovered via the JDK's ServiceLoader
mechanism.

2.5. Exceptions
This section discusses the different exceptions that are defined and used in the Atomikos Transactions API. They are
divided into two categories:

• Checked Exceptions

• Runtime Exceptions

2.5.1. Checked Exceptions

2.5.1.1. HeurCommitException

Thrown by a Participant when rollback is called on a heuristically committed instance. Also thrown by the
CompositeTransaction's commit upon failure: when all Participants for the transaction have been in-doubt for too
long, they may have committed the transaction although all replied positively during the prepare of two-phase
commit. If the transaction manager later re-establishes contact and instructs the Participants to rollback then
this exception will be thrown to the application. It indicates an anomaly in the transaction's outcome, where all
Participants involved have chosen to commit heuristically, because all were left in-doubt. If you get this exception,
it means that the entire transaction has been committed, although rollback was desired.

2.5.1.2. HeurRollbackException

Thrown by a Participant when commit is called on a heuristically rolledback instance. Also thrown by the
CompositeTransaction's commit upon failure: if all Participants have decided to rollback although the final decision

Atomikos Transactions API Overview

13

of the transaction manager was to commit. This is similar to the previous case; this time it means that the entire
transaction has in fact been rolled back whereas the desired outcome was commit.

2.5.1.3. HeurHazardException

Thrown by a Participant for internal failures in any of the two-phase commit methods, when the instance can
not determine the exact outcome. When thrown by the CompositeTransaction, this exception indicates that some
Participants may not have received the final commit or rollback decision at the end of two-phase commit (because
the transaction service could not establish contact after prepare). This means that there is a danger of heuristic
termination if those Participants decide unilaterally after a timeout.

2.5.1.4. HeurMixedException

A participant can throw this exception on any of the two-phase commit methods. For the CompositeTransaction,
this method can be thrown during commit. This is the most complex error, where some of the resources may have
committed and others have rolled back. It hints that the transaction's effects are only partial; this is a clear violation
of transactional semantics. More information should be in the logs.

2.5.1.5. RollbackException

Thrown by a Participant to indicate a NO vote on prepare, or when one-phase commit is requested for a timed-out
instance. At application level, this error is thrown if a transaction is requested to commit (through the terminator or
through the ImportingTransactionManager) when it has already been rolled back due to a timeout. If you get many
such errors, then it may be helpful to create transactions with a higher timeout value.

2.5.2. Runtime Exceptions

2.5.2.1. SysException

This is the general internal error that is thrown by many transaction service components for exceptional conditions.
Instances of this exception contain nested error information, which can be viewed by printing the stack trace.

2.5.2.2. ResourceException

This exception (in package com.atomikos.datasource) is thrown by the RecoverableResource instances. This class is
a subclass of SysException, so you can also analyze the detailed error stack in the same way.

14

Chapter 3. Programming with the
Atomikos Transactions API
The purpose of this chapter is to clarify some important aspects of programming with our API. The structure of this
chapter is as follows:

• Basic Level Programming

• Intermediate Level Programming

• Advanced Level Programming

The basic level deals with essential and minimal API usage in order to import or export a transaction. This is the
minimal knowledge you will need if you use the JTA interfaces for everything else. The intermediate level shows
the effects of commit or rollback through our API, as well as how to use synchronizations and perform parallel
calls within the same transaction. The advanced level goes into lock inheritance, and how to implement custom
Participant types and resources.

3.1. Basic Level
This section explains the basic usage of Atomikos Transactions API, meaning those components whose
functionality is not contained in the JTA interfaces. If you don't plan to do special things with Atomikos (except
shipping transaction context to another VM or importing a transaction from a remote VM) then this section should
be all you need to read. Exporting/importing existing transactions is needed for architectures where different servers
(in different VMs) need to co-operate within the context of the same transaction. Whenever one server calls another
server within the scope of a transaction, the calling server will export the transaction (by adding a Propagation object
to the arguments of the call) and the called server can then import it. Import is discussed in the next section; here we
focus on exporting a transaction.

3.1.1. Exporting an existing transaction

Exporting a transaction can be done through the ExportingTransactionManager interface. A typical code example
for export is shown in the RMI samples available with the product download.

The Propagation contains information about the nested structure of the distributed transaction, as well as its
execution mode (serial or concurrent). You can export a transaction at any time as long as it is active (i.e., rollback
or commit have not been called). Note that the Propagation interface can be passed over socket connections, RMI
calls and so on.

It is important to understand that export is a two-way process: you do not only add the Propagation to the outgoing
call, but you also need to retrieve the Extent from the return value of the call. This extent must then be added to
the ExportingTransactionManager interface. The extent is used for two-phase commit and for detection of orphan
transactions, and it is a crucial part of ensuring exactly-once semantics of the distributed computation. The following
picture is an illustration of the application-level import/export scenario...

Programming with the
Atomikos Transactions API

15

NOTE: Although JTS/OTS defines the mechanism of exporting/importing a transaction, the mechanism
explained here is Atomikos-native. This is necessary because many of the platforms that we support are not
supported by typical CORBA ORBs, nor by the original OTS specifications.

3.1.2. Importing an existing transaction
If a server receives a call with a Propagation as one of the arguments then it should import the corresponding
transaction in order to "tie" the local work into the global transaction. This is done through the
ImportingTransactionManager interface. A typical code example for import is shown in the RMI samples available
via the product download.

Whenever you import a transaction, a local transaction is created that is automatically a subtransaction of the calling
transaction. This happens transparently and allows Atomikos to provide the necessary quality of service.

Programming with the
Atomikos Transactions API

16

IMPORTANT: make sure that any transaction that is imported will also be terminated. This is best done in
a finally-block.

3.2. Intermediate Level
This section is about intermediate-level programming with our API. Read this if you want to understand the effects
of commit/rollback of subtransactions, or if you want to be notified of transaction events.

3.2.1. Subtransaction Commit

When a subtransaction is committed, its Participant instances are added to the set of Participants of the parent
transaction. Alternatively, if there is no local parent then the participants become part of the CompositeCoordinator's
set of Participants eligible for two-phase commit.

The following figures illustrate this. The case shown is for a remote root (called CT1). Upon import, a local
subtransaction CT1.1 is created. For this example we assume that the application also creates a number of
subtransactions, up to CT1.1.1.1. Now, suppose a Participant (called P1.1.1.1) is added to this last subtransaction.
After commit, the Participant is added to the parent transaction. When the parent transaction in turn commits, the
P1.1.1.1 is again propagated upwards in the hierarchy. Finally, the commit of CT1.1 will result in P1.1.1.1 becoming
part of the CompositeCoordinator CC1.1, which will (internally) wait for two-phase commit events and delegate
those to its registered Participants. In this case, P1.1.1.1 will take part in two-phase commit.

Table 3.1. Subtransaction commit

Programming with the
Atomikos Transactions API

17

Note that the commit of a subtransaction does not trigger any method of the Participant. This is delayed
until the global two-phase commit is triggered by the root transaction.

3.2.2. Subtransaction Rollback

If one of the subtransactions is rolled back, then the Participant P1.1.1.1 will not be added to the two-phase commit
set of the CompositeCoordinator. This is illustrated in the next figure: rollback of CT1.1.1 implies that P1.1.1.1
is also rolled back, and no Participant is propagated to the parent of CT1.1.1. This way, subtransactions can be
rolledback without affecting the work of the parent transaction.

Programming with the
Atomikos Transactions API

18

3.2.3. Adding Synchronization Implementations
Add a synchronization to a CompositeTransaction to have a notification about two-phase commit outcome.
The most important use of synchronizations is for writing out persistent state before transaction commit (upon
notification through the beforeCompletion method. It is important to note that implementations should not rely on
being called for recovered transactions. This does not invalidate the usefulness for the writing of persistent state
before prepare time, because prepare is only performed for non-recovered transactions.

The only way of being notified about every two-phase commit event is by registering as a Participant with
the CompositeTransaction. The synchronization is only a straightforward and light-weight alternative for
particular application-level needs.

3.2.4. Adding SubTxAware Implementations
The primary usefulness of SubTxAware is for being notified about any (sub)transaction's preliminary commit
or rollback. The most obvious need exists in cases where one wants to provide full lock inheritance to related
subtransactions.

Programming with the
Atomikos Transactions API

19

The SubTxAwareParticipant is different from the Participant interface because the former does not receive
two-phase commit notifications. Rather, it only receives notification of subtransaction commit or rollback,
which happens before any two-phase commit. An implementation should not rely on the terminating
subtransaction still being associated with the calling thread, not even if the implementation is in the same
VM as the transaction it is registered with. If the implementation needs information about the transaction
that commits or rolls back, then it should do so by inspecting the argument of the callback method.

3.2.5. Adding Participant Implementations
The Participant interface is the only one that has reasonable guarantees about being notified of global two-phase
commit events. Implement this interface if this is a requirement for your application.

3.3. Advanced Level
In this section, we discuss how to program your own transaction-aware resources, make their data accesses subject
to two-phase commit of the overall transaction, and how to control access among related subtransactions by
implementing lock inheritance.

3.3.1. The Big Picture
This subsection first introduces the big picture of the different aspects that come into play when you are
implementing one of the features in this section. As it turns out, these tasks are often related in that you will have to
implement most of them: programming a transactional data source will also involve controlling access to data (locks
and lock inheritance) because locks have a strong impact on the ability to perform rollback (in your implementation
of the Participant interface).

The picture above illustrates a typical interaction that takes place when the application accesses some entity X that
belongs to your Resource. Access(X) could mean anything from an update of record X to the posting of a message

Programming with the
Atomikos Transactions API

20

with identifier X. Each step is discussed in some more details next. In this discussion, every object except the
CompositeTransactionManager and the CompositeTransaction are assumed to be programmed by you. Also, it is
you who is responsible for making sure that the interactions shown are actually performed.

1. Assuming that the resource expects transactional access, it first asks the CompositeTransactionManager if a
transaction exists for the calling thread. If none is returned, an exception should probably be thrown by the
resource.

2. If a transaction was found, then a lock can be set for the transaction. Locks are typically needed to guarantee
correctness of access operations, but also for being able to perform correct rollback.

3. Next, a Participant implementation (specific to your resource implementation) is created and subsequently
added to the CompositeTransaction instance.

4. After this, the access operation is performed, and the result is returned to the application. The commit or
rollback of the composite transaction (by the application) will eventually trigger the commit or rollback
operation of the Participant instance you registered, and this should also lead to the lock being released.

Although the previous picture suggests that your resource be an instance of
com.atomikos.datasource.RecoverableResource, this is only a requirement if your Participant
implementation needs help during recovery. See the section about implementing a RecoverableResource
for more information on this.

3.3.2. Implementing Lock Inheritance
The big picture shown before does not tell us what to do if a lock already exists on behalf of another
CompositeTransaction, and for the desired access of X. If that is the case, then a design decision that rests on you
is the following: should related composite transactions (those that are for the same top-level root transaction) be
treated in a preferred way or not?

In case a lock already exists, and it is for a non-related transaction, then there is only one thing to do according to
traditional locking rules: the access has to be put on a waiting list, or denied completely. If, on the other hand, the
lock was acquired on behalf of a related transaction then a valid option is to provide lock inheritance. This means
that the access operation will be allowed eventually, as soon as some conditions are met (which are discussed in
more detail below). An alternative option is to treat a related transaction in the same way as non-related transactions,
but this can result in deadlocks within the same top-level transaction's execution (can you see why?).

The decision to implement lock inheritance has far-reaching consequences with respect to rollback:
it means that rollback can not be done in arbitrary order, but has to respect the inverse order in which
the different related transactions were granted access. This implies that you should register only one
Participant for all accesses done by related transactions that benefit from lock inheritance. The reason for
this is that the transaction service does not guarantee any particular order on the invocation of rollback
for the registered Participant instances! The implication is that for lock-inheritance schemes, you should
provide a Participant implementation that is able to rollback the effects of multiple accesses done on behalf
of related composite transactions.

The Atomikos APIs provide two ways of implementing lock inheritance. Each one is discussed next.

3.3.2.1. Lock Inheritance Through SubTxAwareParticipant Callbacks

This implementation makes sure that you implement true lock inheritance as it was first introduced in computer
science literature. It depends on the capability of subtransactions to notify resources when they terminate. This can

Programming with the
Atomikos Transactions API

21

trigger the granting of locks for other, related subtransactions that the resource has kept waiting for those locks. In
order to explain how this technique works, we will use an example shown in the following picture.

The example involves one root transaction named CT1, and its descendants (subtransactions) which are obviously
all related to each other (because they are descendants of the same root and this is the definition of being related).
Now, suppose that a resource is holding a lock on behalf of CT1.1.1 when an access is requested on behalf of the
concurrent but related transaction CT1.2. How should the resource make sure that CT1.2 will eventually be able to
access the data, but without jeopardizing the integrity of each subtransaction?

The answer is the following: the resource can do so by registering as a SubTxAwareParticipant with CT1.1.
Subtransaction commit or rollback of CT1.1 will notify any SubTxAwareParticipants who registered. Those
instances then know that all subtransactions of CT1.1 have finished. This means that CT1.1's isolation (integrity)
can not be violated by CT1.2, and CT1.2 can be granted its lock. Without going into more explanation as to how and
why, we can generalize this into the following rule:

A resource that keeps a lock for some subtransaction, say CT1.1.1, and receives a request for a related
transaction, say CT1.2, should register as a SubTxAwareParticipant with the highest ancestor of CT1.1.1
that is not also an ancestor of CT1.2. This information can be extracted by comparing instances in the
lineages (ancestor stacks) available for both CT1.1.1 and CT1.2, as shown in the picture above. The
getLineage() method of the CompositeTransaction interface will return this ancestor information.

3.3.2.2. Lock Inheritance Through CompositeTransaction.isSerial()

If you don't want the programmatic and communication-related overhead of true lock inheritance, then you can
resort to an Atomikos optimization by using the serial flag associated with each CompositeTransaction instance.

The way this method works is simple: it suffices to note that locks are only needed among related transactions if
these are concurrent. If all related transactions are guaranteed to be executing one after the other, then no malicious
effects can arise among related transactions, and a lock for one of them should not block any others. Your resource
implementation can easily check this by calling the CompositeTransaction.isSerial() test. Atomikos propagates this

Programming with the
Atomikos Transactions API

22

flag from the root transaction to all subtransactions (even across VMs), and this flag can only be changed at the root
level.

Although Atomikos propagates this flag across the system, it is the application's responsibility to respect
this flag's setting: before an application starts subtransactions in parallel threads (or exports multiple
propagations for the same transaction in parallel) it should assert that the current transaction is not serial.

23

Chapter 4. The Administration API
This part dicusses the administration API, which allows you to present new administration tools for administering
log contents and active transactions. The elements discussed here are all part of the com.atomikos.icatch.admin
package.

The administration API allows you to implement custom tools for inspecting the transaction logs and
forcing termination of problematic transactions. It also allows you to present logged information about
transactions in a customized way.

4.1. Administration API Overview
First we will present an overview of the adminstration API.

4.1.1. LogControl
The LogControl interface is the interface towards the transaction core. If you write a custom administration tool,
then the LogControl is where you can get all information from. During initialization, the transaction service will
register itself as a LogControl interface with all registered LogAdministrator implementations. A LogAdminstrator
implementation should save this LogControl handle in an attribute for later usage. The LogControl's only
functionality is retrieval of AdminTransactions from the core transaction service.

4.1.2. LogAdministrator
The LogAdminstrator is your initialization hook for getting a LogControl handle. You should
implement this interface and register it before initialization of the transaction service (by calling
UserTransactionService.addLogAdministrator).

• registerLogControl This method is called during startup of the transaction service, which will thereby provide
the LogAdministrator with a hook to retrieve AdminTransaction instances from.

• deregisterLogControl Called during shutdown, to notify the instance that it should no longer use the provided
LogControl because the logs will be closed.

4.1.3. AdminTransaction
The AdminTransaction interface is the main administrative tool. It provides you with an adminstration view of a
CompositeCoordinator and allows inspection and control of state information.

The AdminTransaction represents all local CompositeTransaction instances of the same top-level
transaction. As such, it is actually an adminstrative view on a CompositeCoordinator rather than
on individual transaction instances. This is because the two-phase commit protocol is performed at
CompositeCoordinator granularity and not at CompositeTransaction granularity.

• getTid returns the unique transaction identifier of the particular transaction in the logs. This ID corresponds to
the root transaction, and can be used by administrators to correlate problematic work across different server
VMs: all log entries of problematic transactions will contain the same root identifier, regardless which node they
executed on.

The Administration API

24

• getState retrieves an integer state code that represents the two-phase commit state at the time of the call.

• wasCommitted for heuristic mixed/hazard termination cases, this test allows you to determine which outcome
was desired.

• forceCommit long duration indoubts can be forced to commit with this method. This will trigger the commit of
all registered Participant instances.

• forceRollback long duration indoubts can be forced to rollback with this method. This will trigger the rollback of
all registered Participant instances.

• forceForget heuristic cases can be purged from the logs with this method.

Although this interface extends Serializable, the default implementation returned by the LogControl
provided during startup is not meant to be serialized. If you want to implement a remote administration
tool then you should be prepared to provide proxy instances that can be shipped to a remote adminstration
client.

4.2. Interactions with the Transaction Service
The following picture summarizes the interactions with the transaction service. If your application needs custom log
administration tools, then it will need to offer its own LogAdministrator implementation.

25

Appendix A. References
• http://java.sun.com: Sun's Java website with the JTS specifications and extra information.

• http://www.atomikos.com: Atomikos' website; please check regularly for updates and support information.

• Distributed Transaction Processing: The XA Specification (ISBN 1-872630-24-3). Published by The Open
Group (http://www.opengroup.org).

• G. Pardon. Composite Systems: Decentralized Nested Transactions. Ph.D. thesis Nr. 13993, Swiss Federal
Institute of Technology Zurich.

• J. Elliot B. Moss. Nested transactions: an approach to reliable distributed computing. Ph.D. thesis,
Massachusetts Institute of Technology, 1981. Available as Technical Report MIT/LCS/TR-260.

• On the Cost of Lock Inheritance in Lock Managers Supporting Nested Transactions (1994). Laurent Daynes,
Olivier Gruber, Patrick Valduriez

