
Atomikos
TransactionsEssentials™ Guide

Atomikos TransactionsEssentials Guide
Copyright © 2008-2016 Atomikos

iii

Table of Contents
1. Introduction .. 1

1.1. Who Should Read This Guide ... 1
1.2. Preface .. 1
1.3. System Requirements ... 1

2. JTA Overview .. 2
2.1. Transactions ... 2

2.1.1. Nested Transactions .. 2
2.2. What is JTA? ... 3
2.3. Two-Phase Commit ... 3

2.3.1. JTA Components .. 4
3. Configuring Atomikos TransactionsEssentials ... 13

3.1. The Configuration File ... 13
3.2. Default Values You Should Override .. 13
3.3. Ant-Style References in the Properties File .. 13
3.4. Questions ... 14

3.4.1. Question 1 ... 14
3.4.2. Question 2 ... 14
3.4.3. Question 3 ... 14

4. Programming Transactional Applications ... 15
4.1. Regular Applications: Atomikos JDBC/JMS and the UserTransaction ... 15

4.1.1. Getting the UserTransaction .. 15
4.1.2. JDBC: Using an Atomikos DataSource ... 16
4.1.3. JDBC: Using an Atomikos Non-XA DataSource .. 17
4.1.4. JMS: Using an Atomikos JMS ConnectionFactory .. 18
4.1.5. JMS: Message-Driven Functionality ... 19
4.1.6. JMS: Managed Sender Sessions .. 19

4.2. For XA-Level Integration: The JTA TransactionManager ... 19
4.2.1. Getting the TransactionManager .. 19
4.2.2. Typical Code Pattern for JTA/XA .. 20

4.3. For Sophisticated Needs: The Atomikos UserTransactionService ... 21
4.3.1. Getting a UserTransactionService Instance .. 22
4.3.2. Overriding static properties ... 22
4.3.3. Explicit Resource Registration and Recovery ... 22
4.3.4. Registering a LogAdministrator ... 23
4.3.5. Explicit Startup and Shutdown .. 24
4.3.6. Getting the UserTransaction .. 24
4.3.7. Getting the TransactionManager .. 25
4.3.8. Questions .. 25

A. Answers .. 27
A.1. Chapter 2: Answers .. 27

A.1.1. Question 1 .. 27
A.1.2. Question 2 .. 27
A.1.3. Question 3 .. 27
A.1.4. Question 4 .. 27
A.1.5. Question 5 .. 27

A.2. Chapter 3: Answers .. 28
A.2.1. Question 1 .. 28
A.2.2. Question 2 .. 28
A.2.3. Question 3 .. 28

A.3. Chapter 4: Answers .. 28
A.3.1. Question 1 .. 28

Atomikos
TransactionsEssentials™ Guide

iv

A.3.2. Question 2 .. 29
B. Using Atomikos TransactionsEssentials in (Web) Application Servers .. 30
C. Troubleshooting .. 31
D. References ... 32

v

List of Examples
2.1. A typical transaction use case ... 2
4.1. Getting the UserTransaction .. 16
4.2. Configuring an Atomikos DataSource ... 16
4.3. Using an Atomikos datasource ... 17
4.4. Using an Atomikos Non-XA DataSource ... 17
4.5. Using an AtomikosConnectionFactoryBean .. 18
4.6. Typical pattern of JTA/XA usage ... 20
4.7. Constructing the UserTransactionService object .. 22
4.8. Creating a TSInitInfo object .. 22
4.9. Explicitly registering a (JDBC) resource for recovery. ... 23
4.10. Explicit startup and shutdown .. 24
4.11. Getting the UserTransaction via the UserTransactionService .. 25
4.12. Getting the TransactionManager via the UserTransactionService .. 25

1

Chapter 1. Introduction
1.1. Who Should Read This Guide
You should read this guide if you fall into one of the following categories:

• You want to use Atomikos TransactionsEssentials.

• You want to add transaction support to your J2SE application.

• You want to understand a bit more about JTA.

1.2. Preface
This user guide explains how to use Sun's Java Transaction API (JTA)™ version 1.0.1 and the Atomikos
TransactionsEssentials™ embedded transaction manager. It is not meant as a general discussion of JTA. However,
an overview of JTA is included, and wherever appropriate there are questions at the end of each chapter that allow
you to test your understanding. You are encouraged to actively try to answer these questions, since they will
allow you to get more out if this manual. For more information on JTA, you are referred to the Sun site (http://
java.sun.com), where detailed JTA specifications can be downloaded for free. Although examples based on JDBC™
and JMS™ are used to illustrate the concepts, we consider those two technologies to fall outside the scope of this
manual. Again, the Sun website has more information for the interested reader. If you don't like to read manuals,
then you can take a shortcut and go to the examples included in the installation folder. These illustrate the concepts
that are explained in the text with source code of example programs.

1.3. System Requirements
This guide has been written for Atomikos TransactionsEssentials release 4.0 or higher. In order to use the Atomikos
system we recommend that you install and run a Java VM of at least version 1.7. Memory requirements are likely to
depend more on your code than on our software because of the compact nature of the kernel; most modern systems
should have more than enough memory. The libraries that come with Transactions include most of what you need in
order to compile transactional applications: the API definitions for javax.transaction.*, javax.sql.* and javax.jms.*
are included so that you do not need to get those separately.

NOT included in this release are vendor-specific JDBC or JMS implementation libraries. For instance, if
you want to use our transaction service to manage transactions that access your Oracle™ database, then
you need to make sure that you have the Oracle JDBC classes installed in your classpath, in addition to the
Transactions distribution classes. Likewise, if you want to use IBM MQSeries™ for JMS then you need to
make sure that the MQSeries libraries are in your classpath.

2

Chapter 2. JTA Overview

Unless explicitly mentioned, the discussion in this chapter is limited to pure JTA: the content of this
chapter should apply for ANY JTA implementation, not just Atomikos'. Atomikos-specific information is
provided in the later chapters of this manual.

This chapter is a generic JTA overview: it quickly reviews the most important things about JTA that you need to
know in order to use Transactions™. The organization is as follows:

• Transactions

• What is JTA?

• Two-Phase Commit

• JTA Components

• JTA Interactions

• Questions

2.1. Transactions
A transaction is a logical unit of work which effects can either be made permanent in their entirety (committed)
or cancelled in their entirety (rolled back). Before a transaction is committed or rolled back, it is active. Active
transactions' effects are typically invisible to other, concurrent transactions. Consequently, only committed
transactions' effects are visible (can you see why?).

Example 2.1. A typical transaction use case

Imagine that you want to publish a customer-related order message through the Java Message Service (JMS) and at
the same time mark the customer's order data in the database as being processed. The message should not be sent
unless the database can be updated and vice versa.

The concept of transactions requires system-level software support to make these properties hold. A piece of
software that takes care of this is called a transaction manager or transaction service.

2.1.1. Nested Transactions

The nested transaction model is a variant of the normal ('flat') transactional model. Nested transactions differ in
that a subtransaction can be created within an existing transaction (which becomes the parent transaction). The
subtransaction is again a transaction that can be committed or rolled back. The major differences with normal
transactions are in visibility and termination:

• Visibility: an active (sub)transaction's effects are visible to its subtransactions (if any). This means that there is
sharing of updates from parent transaction to subtransaction.

• Termination: a rolled-back subtransaction does not affect its parent transaction. On the other hand, a committed
subtransaction's effects become part of the parent transaction, and become permanent only after the top-level
transaction (the one without a parent) commits.

JTA Overview

3

2.2. What is JTA?
JTA is short for Sun Microsystems' Java Transaction API and is Sun's (low-level) API for creating transactions in
Java and making your data access operations part of those transactions.

The JTA defines how your application can request transactional functionality on the Java platform. JTA is not
a product in itself, but rather a set of Java interfaces. A vendor-specific JTA implementation referred to as a
transaction manager or transaction service (such as Transactions™) is needed to actually use the functionality
defined in these interfaces. In other words, you can program JTA transactions in your application, but you need the
implementation classes of a JTA-compliant transaction manager vendor in order to run your application.

JTA is a standard part of the Java Enterprise (J2EE) platform and every Enterprise JavaBeans (EJB) application
server should also include a JTA implementation. The JTA is said to be low-level because EJB programmers
typically don't access the JTA API directly or explicitly. Rather, the EJB application server makes the appropriate
calls behind the scenes.

So given that an EJB server will also give you JTA functionality, why should you consider using Atomikos'
TransactionsEssentials? Here are just a few reasons:

• Not all EJB servers will provide a fully functional JTA (even if they claim so). For instance, most -if not all-
open source EJB servers don't even come close to what a transaction manager needs to do, and fail when they
are needed most: after restart or a server crash.

• EJB servers that do provide a reasonable transaction manager are often very expensive, and an overkill for many
solutions that only need a fraction of the J2EE APIs. Atomikos TransactionsEssentials provides transactions at a
fraction of the cost of a full EJB server.

• Atomikos TransactionsEssentials offers more features than defined in the JTA specification.

• Atomikos TransactionsEssentials has better and more functionality than most competitors offer.

• Atomikos TransactionsEssentials was designed for very high performance (there is no extra overhead for JTA
transactions; local transactions and JTA transactions can be expected to be equally fast).

• With Atomikos TransactionsEssentials you can even bring JTA functionality on the J2SE (Java 2 Standard
Edition) platform.

2.3. Two-Phase Commit
In the previous section we have referred to a JTA implementation as a transaction manager or transaction service. A
transaction is a logical unit of work that either happens completely (in all databases or queues that were accessed by
it) or not at all. The transaction manager is the software module that is responsible for ensuring this property. It does
this by executing a two-phase commit termination protocol that addresses all of the resources that a transaction has
used. This two-phase commit happens behind the scenes of your application: you typically don't notice it.

Let us briefly describe two-phase commit with the previous example still in mind. Two-phase commit works in two
phases: a voting phase and a decision phase.

• In the voting (or prepare) phase, the transaction manager will ask both the JMS message queue and the database
whether they can agree with a successful termination or not. Each may return a negative reply, for instance if
there was a time-out which caused the database's work to be rolled back. If one of them replies positively, then
it should make sure it can always make the work permanent (this implies that it can no longer cancel due to an
internal time-out).

• After the transaction manager has received all of the replies (also called 'votes') it will make a global decision on
the outcome of the transaction. This decision will depend on the collected replies:

JTA Overview

4

• If both replies were positive (meaning that both the JMS and the database can make the work permanent),
then the transaction manager will instruct each to commit.

• If at least one reply is negative (or missing) then a rollback decision is sent to the remaining resource. This
means that the remaining resource cancels (rolls back) the work done for the transaction.

There are two things to notice:

• Each resource must have the capability to understand two-phase commit: it needs to reply to a prepare request
from the transaction manager, and be able to rollback (cancel) the work if the transaction manager decides so.

• If a resource votes positively during prepare and is then cut off from the transaction manager (for instance, if the
transaction manager crashes) then it does not know what to do. It can not cancel on its own due to the two-phase
commit protocol rules, so it needs to remember the transaction indefinitely. In addition, this restricts concurrent
access by other transactions. In that case, the resource is said to be in-doubt.

This explains why JTA can not be used to make anything transactional: you can only have transactional properties
for applications that access the proper type of resources (those resources that understand two-phase commit).

The fact that a resource can remain in-doubt and restrict concurrent access is something that has bothered many
vendors. To alleviate this restriction, a practical variant of the two-phase commit protocol includes so-called
heuristic decisions: a resource that remains in-doubt for too long may decide to unilaterally rollback (or commit)
the transaction, leading to possible violation of the all-or-nothing property. We will see more on this later in this
chapter.

2.3.1. JTA Components
Here we will review the main components (interfaces) of the JTA specification and briefly discuss their roles. We
will not repeat the definitions for these interfaces; those can be found in the JTA specifications on Sun's site. The
packages relevant to this chapter are javax.transaction and javax.transaction.xa.

• TransactionManager

• Transaction

• Xid

• XAResource

• Synchronization

• UserTransaction

• Exceptions

2.3.1.1. TransactionManager

The transaction manager is where you can create new transactions and set properties (such as the timeout value) for
future transactions. It also allows your application to retrieve the current transaction, after you have created one. An
interesting point is that this is thread-safe: if you have multiple threads running concurrently, then each thread can
create its own transaction and will be able to retrieve only that transaction which it created. The transaction manager
will behave as a 'private' manager for each thread of your application.

The following methods are provided:

• begin: this method creates a transaction for the application. When it returns, you will be able to retrieve the
transaction object through getTransaction within the current thread. Atomikos' TransactionsEssentials supports

JTA Overview

5

nested transactions, meaning that a transaction can be created within another one. This means that for Atomikos
TransactionsEssentials, calling this method twice in the same thread (without commit/rollback in between)
will create a nested transaction, whose final commit will coincide with the commit of the first transaction you
created.

• commit: this method will try to commit the last transaction that was created for the current thread. Afterwards,
the transaction can no longer be retrieved by getTransaction. For AtomikosJTA, if the last transaction was a
subtransaction then this will trigger the commit of the subtransaction. According to the semantics of nested
transactions, the subtransaction's updates will not be visible or permanent before the top-level transaction to
which it belongs is committed. The commit of a subtransaction will restore the thread association for its parent
transaction. This means that calling getTransaction will again return the parent transaction.

• rollback: this method will trigger rollback of the last transaction that was created for the current thread. For
AtomikosJTA, nested semantics apply: if the current transaction is a subtransaction, then the rollback will
not affect the parent transaction: work done within the parent is not automatically lost by rolling back the
subtransaction. As with commit, this method changes the transaction-association for the thread. For a top-level
transaction, this leaves the current thread without a transaction. For a subtransaction, this method restores the
thread association for the parent transaction.

• getTransaction: this method returns the transaction object for the calling thread, or null if there is no active
transaction. The transaction object is needed in order to add work to it: all the work that needs to be part of this
transaction must be explicitly added to it (more on that below).

• setTransactionTimeout: this is to set the timeout of future transactions. A timeout indicates the time a transaction
is allowed to be active before it is automatically rolled back by the transaction manager.

• getStatus: allows you to retrieve the status of the current transaction.

• setRollbackOnly: see Transaction.

• suspend: this method is useful if an active transaction exists, but you need to start a new transaction that is
independent. By suspending the current transaction, you dissociate it from the current thread and are free to
begin a new one, whose commit or rollback will not affect the current transaction. If you want to have another
thread continue the current transaction then this method can be used (in combination with resume) to 'pass on'
the transaction to another thread.

• resume: this method (re-)associates the calling thread with an existing transaction (typically one that was
suspended first). If you continue a transaction in a different thread, then that thread should call this method with
the transaction as an argument. If you have done some intermediate work in a different transaction, then this
method can be called to resume the original transaction.

Note: setTransactionTimeout will ignore values that exceed the maximum specified by
configuration parameter com.atomikos.icatch.max_timeout (see the configuration chapter later
in this guide).

2.3.1.2. Transaction

The transaction interface allows manipulation of an active transaction. The most important role of this interface is
to add work to the scope of the transaction, thereby making the outcome of the work depend on the outcome of the
transaction. The functionality of the transaction interface is discussed below.

• enlistResource: this method adds work to the transaction. The required argument is of type XAResource, which
is an interface for resources that understand two-phase commit. By enlisting an XAResource, the work that
it represents will undergo the same outcome as the transaction. If different resources are enlisted, then their

JTA Overview

6

outcome will be consistent with the transaction's outcome, meaning that either all will commit or all with
rollback.

• delistResource: this method indicates that the application stops using the XAResource for this transaction. The
XAResource is essentially a connection to the underlying data source, and this method notifies the transaction
manager that the connection becomes available for two-phase commit processing. There are two special cases: if
a flag value of TMSUSPEND is given as a parameter, then the method call merely indicates that the application
is temporarily done and intends to come back to this work. This merely serves for internal optimizations inside
the data source. You should call this method if the transaction is being suspended. Coming back to such a
suspended work's context is done by calling enlistResource again, with the same XAResource. The second
special case is when TMFAIL is supplied as argument. This can be done to indicate that a failure has happened
and that the application is uncertain about the work that was done. In this case, commit should not be allowed,
because there is uncertainty about the contents of the transaction. For instance, if a SQLException occurs during
a SQL update, then the application can not know if the update was done or not. In that case, it should delist the
resource with the TMFAIL flag, because committing the transaction would lead to unknown effects on the data;
this could lead to corrupt data.

• getStatus: this method returns the status of the transaction.

• commit: same as TransactionManager.commit(). This method should not be called randomly: first, every
XAResource that was enlisted should also be properly delisted. Otherwise, XA-level protocol errors can occur.

• rollback: same as TransactionManager.rollback(). As with commit, this method should not be called randomly:
first, every resource that was enlisted should also be delisted. Otherwise, XA-level protocol errors can occur.

• setRollbackOnly: mark the transaction so that it can not commit. This method is provided to allow application
code to prevent the transaction from committing, without the requirement to call rollback directly. There are
good reasons for this: the rollback should happen after proper delisting of all resources and therefore is not
something that happens randomly. This method, however, can be called at any time when the transaction is
active.

• registerSynchronization: this method adds a callback for third-party notifications about two-phase commit
outcome. This is useful if you are caching updates until the end of the transaction, and need a notification about
when that end is going to be.

2.3.1.3. Xid

This interface is important for the communication between the transaction manager and the system behind the
XAResource. The XAResource is essentially a connection to that system, and many different transactions can use
the same connection. Therefore each time the transaction manager wants to begin or end a transaction, it needs to
use an identifier that the system behind understands and that identifies the work of the transaction in question. To
this end, one JTA transaction can have one or even multiple Xid instances associated to it. It is not necessary to
completely understand this mechanism in order to use Atomikos TransactionsEssentials, so it will not be discussed
in more detail here.

2.3.1.4. XAResource

The XAResource is the transaction manager's connection to the data source. For each application-level connection,
an XAResource is needed to make the application's work through that connection part of a JTA transaction. The
details of the XAResource are not important for TransactionJTA, so we will not discuss them any further.

2.3.1.5. Synchronization

This interface is a means to register an application-level callback; it allows the application to be notified upon two-
phase commit events. You can use this functionality by implementing this interface in your application.

JTA Overview

7

Note: synchronizations are not persistent; after a crash, any recovered transactions' synchronizations will be
lost.

• beforeCompletion: this method is called before the transaction will start its commit. A typical usage of this
method is to write pending updates to the database.

• afterCompletion: this method is called after commit or rollback completes, and indicates whether it was
successful or not.

2.3.1.6. UserTransaction

This interface is a simple and restricted version of the JTA functionality. It is the typical application-level
transaction service handle in EJB. You can use this interface to expose only a subset of JTA functionality to the
application code.

Note: setTransactionTimeout will ignore values that exceed the maximum specified by
configuration parameter com.atomikos.icatch.max_timeout (see the configuration chapter later
in this guide).

2.3.1.7. Exceptions

There are some specific exceptions in JTA that are worth mentioning: those that concern the heuristic terminations.
Since they are not really made clear in the JTA specification, we will mention something about them here.
Whenever a heuristic error happens the transaction manager should keep a log entry for the transaction involved,
so that a human administrator can resolve any conflicts. Part of Atomikos' patent applications concern precisely the
kind of information that is available in the logs in these cases.

• HeuristicCommitException: if all resources have been in-doubt for too long, they may have committed the
transaction although all replied positively during the prepare of two-phase commit. If the transaction manager
later re-establishes contact and instructs the resources to rollback then this exception will be thrown to the
application. It indicates an anomaly in the transaction's outcome, where all resources involved have chosen to
commit heuristically, because all were left in-doubt. If you get this exception, it means that the entire transaction
has been committed, although rollback was desired.

• HeuristicRollbackException: all resources have decided to rollback although the final decision of the transaction
manager was to commit. This is similar to the previous case; this time it means that the entire transaction has in
fact been rolled back whereas the desired outcome was commit.

• HeuristicMixedException: this is the most complex error, where some of the resources may have committed
and others have rolled back. It hints that the transaction's effects are only partial; this is a clear violation of
transactional semantics. Remember, more information should be in the logs.

2.3.1.8. JTA Interactions

This section hightlights some typical JTA interactions for JDBC data sources. For other resources such as JMS
queues, most things are the same except for the way the XAResources are to be retrieved.

• Active Transaction

• Transaction Commit

JTA Overview

8

• Transaction Rollback

• Transaction Termination with Errors

2.3.1.8.1. Active Transaction

The typical interactions for an active JTA transaction are shown below. Note that the only thing you have to provide
is the Application, and the Connection Manager if you don't use the Atomikos connection pools.

Please note a very important point when using connection pools: the connection manager will only be able
to delist a resource when it is informed about the application-level close operation on the JDBC connection.
This means that you should always properly close the connections from the pool; this should be done in the
finally-part of a try{...}finally{...} block. Opening the connection belongs in the try-part.

2.3.1.8.2. Transaction Commit

The typical commit scenario is shown below.

JTA Overview

9

2.3.1.8.3. Transaction Rollback

A possible rollback scenario is shown below: the application requests commit, but one of the XAResources has
timed out and rolled back before it is asked to prepare. The result is rollback, and an application-level exception
(since commit was requested).

JTA Overview

10

2.3.1.8.4. Transaction Termination with Errors

A possible heuristic scenario is shown below: the application requests commit, but one of the XAResources
becomes unreachable after it is asked to prepare. The result is heuristic rollback, and by the time the transaction
manager re-establishes contact commit fails with a heuristic error. An application-level heuristic mixed exception is
thrown (since the other two XAResources did commit, parts have been committed and other parts have not).

JTA Overview

11

2.3.1.9. Questions

2.3.1.9.1. Question 1

Consider the two-phase commit protocol and the example in the text: an update in a database and a message being
published in JMS, as part of one transaction. Can't you solve the problem of reaching the same outcome for both
parts by controlling the order in which you execute each one? For instance, why bother controlling the outcome of a
database update if your application knows that it succeeded already?

2.3.1.9.2. Question 2

Imagine the following scenario: an application is using a JTA implementation to manage transactions that access
two JDBC databases, say, DBa and DBb. The application has updated both of them and is in the course of
committing the transaction. As part of that commit processing, the transaction manager has received positive replies
from both databases when it asked them to prepare and hence it decides to commit. However, it can only notify
DBa of this decision: before DBb can be told about commit, a system crash happens and causes DBb to go down.
The rest of the system is not affected because DBb is running on its own private machine. The transaction manager
repeatedly retries to connect to DBb, but after a while it gives up and throws an exception to the application. What is
the exact type of this exception?

2.3.1.9.3. Question 3

Which of these methods can be called at any time when a transaction is active: setRollbackOnly or rollback? Why?

JTA Overview

12

2.3.1.9.4. Question 4

An application has started a transaction and is in the middle of updating a JDBC database when a SQLException
happens. Should the transaction be committed or rolled back?

2.3.1.9.5. Question 5

An application is listening on incoming remote method invocation (RMI) request. An incoming requests is executed
in some Java thread according to the virtual machine's internal rules. This thread could be the same one as for a
previous request. The application-level logic for an invocation involves creating a JTA transaction and doing some
JDBC work as well as publishing a JMS message. If you are using a JTA implementation that supports nested
transactions, why should you always make sure that the transaction is terminated (by commit or rollback) before the
invocation returns?

13

Chapter 3. Configuring Atomikos
TransactionsEssentials
Whereas the previous chapter was generic JTA information, this chapter is specific to Atomikos
TransactionsEssentials. It concerns the setup (configuration) of Atomikos TransactionsEssentials in your
application.

Atomikos TransactionsEssentials is an embedded transaction service, meaning that it runs inside the same
VM as your application. This optimizes speed and availability of your application.

Configuration is done in the configuration file, a properties file with property=value combinations of important
transaction service settings. The settings you use determine general transaction-related information such as where
logfiles are to be kept and what default timeout values are.

3.1. The Configuration File
The configuration file contains the parameters for initialization and operation of the transaction service. If this file
can not be found then default values will be used. To instruct Atomikos TransactionsEssentials to use a custom
configuration file, there are several possibilities:

• Name the file transactions.properties and put it in your classpath.

• Give your file any name and location you like, and specify this as a system property at startup: java -
Dcom.atomikos.icatch.file=path_to_your_file ... Note that setting this system property overrides any
transactions.properties configuration data that you might have according to the first approach.

• To avoid using a configuration file, you can also use run-time values for each of the parameter settings.
You can indicate that this is the case by supplying the following system property at startup: java -
Dcom.atomikos.icatch.no_file ... In that case, the properties need to be set programmatically before initialization
of the transaction service. This is explained in the last part of this guide.

3.2. Default Values You Should Override
Although reasonable defaults are provided, you probably should override the following configuration parameters to
suit your application's needs:

• com.atomikos.icatch.tm_unique_name: set this value to a unique name for each application.

• com.atomikos.icatch.max_timeout: this value limits the timeout that can be set for any transaction.
More precisely: you cannot specify a timeout that exceeds the limit specified here. Set this value according to the
needs of your application. If you have long queries or updates then the default may not be sufficient.

• com.atomikos.icatch.force_shutdown_on_vm_exit: set this to true if you want shutdown
behaviour (VM exit) to show backward compatibility with pre-3.3 releases. Note: this is NOT recommended for
Spring use, since it is the Spring container that should shutdown the transaction core.

3.3. Ant-Style References in the Properties File
As of release 3.2, a value in the properties file can reference another property - see https://www.atomikos.com/
Documentation/JtaProperties for more information and examples.

Configuring Atomikos
TransactionsEssentials

14

3.4. Questions

3.4.1. Question 1
If you don't have a configuration file and don't set system properties related to the configuration, where will the
transaction service write log files?

1. In the current directory.

2. In the directory where you start your application.

3. In a new directory, called tmlog.

3.4.2. Question 2
In the configuration file, there is a parameter called com.atomikos.icatch.checkpoint_interval. If you increase this
parameter's value, then what happens?

1. The average log file size will be larger.

2. The average log file size will be smaller.

3.4.3. Question 3
What parameter has no default value and MUST be specified in any configuration file?

15

Chapter 4. Programming Transactional
Applications
For any J2SE application based on Atomikos TransactionsEssentials, we can distinguish the following
main programming styles. Which one is best for you depends on the way you want to use Atomikos
TransactionsEssentials, and what exactly your application needs. Each option is discussed in more detail in the rest
of this chapter.

1. Regular Applications: Atomikos JDBC/JMS and the UserTransaction Use this approach if you want to use our
JDBC DataSource or JMS QueueConnectionFactory adapters to perform JDBC or JMS within the scope of a
transaction.

2. For XA-Level Integration: The JTA TransactionManager Use this approach if you don't want to use our JDBC
or JMS adapters and still want to do JTA/XA transactions with minimal effort.

3. For Sophisticated Needs: The Atomikos UserTransactionService This approach allows you to initiate the
startup and shutdown of the transaction service, and gives you full control over how resources are configured.
You will also need this approach if you want to extend transactions across RMI or JMS communication links.

4.1. Regular Applications: Atomikos JDBC/JMS
and the UserTransaction
This is the easiest and most straightforward way of using Atomikos TransactionsEssentials. Your application uses
the built-in Atomikos resource adapters to connect to the back-end systems, and delimits transactions through our
UserTransaction implementation. No other steps are required (in particular, transaction service startup, recovery and
shutdown are done automatically).

• Getting the UserTransaction

• JDBC: Using an Atomikos DataSource

• JDBC: Using an Atomikos Non-XA DataSource

• JMS: Using an Atomikos QueueConnectionFactory

• JMS: Message-Driven Functionality

• JMS: Pooled Receiver Sessions

• JMS: Pooled Sender Sessions

• JMS: Bridging Different JMS Domains

4.1.1. Getting the UserTransaction

We have a built-in implementation of javax.transaction.UserTransaction that you can use for
your application's transaction. To do this, you merely need to construct an instance of class
com.atomikos.icatch.jta.UserTransactionImp (use the default, no-argument constructor):

Programming
Transactional Applications

16

Example 4.1. Getting the UserTransaction

 com.atomikos.icatch.jta.UserTransactionImp utx =
 new com.atomikos.icatch.jta.UserTransactionImp();

 //now we are ready to do transactions!
 //startup and recovery of the transaction manager
 //will happen automatically upon first use of utx

This is all you need: startup and recovery of the transaction service will happen automatically as soon as you start
using the UserTransaction. Shutdown of the transaction engine is triggered automatically as well, and happens
when your application's VM exits. Also, it is worth pointing out that the UserTransactionImp class implements
both java.io.Serializable and javax.naming.Referenceable, meaning it can be stored in JNDI where available. All
instances of the class com.atomikos.icatch.jta.UserTransactionImp are equivalent to your application (if you have
many, you can use any of them when you like).

4.1.2. JDBC: Using an Atomikos DataSource
Atomikos provides two main categories of javax.sql.DataSource implementations: one that is aware of an
underlying (vendor-specific) javax.sql.XADataSource, and another one that uses any regular (non-XA) JDBC driver
class. This section discusses the first category, while the next section focuses on the second.

Our DataSource implementation is called com.atomikos.jdbc.AtomikosDataSourceBean. As its name
suggests, this class is a JavaBean class, meaning it has a default no-argument constructor and get/
set methods for setup properties. These properties indicate preferences such as connection pool
settings, and also how to construct and access an underlying RDBMS vendor-specific instance of
javax.sql.XADataSource. If your RDBMS vendor does not support XADataSource, then see the next
section on what to do.

In addition, our DataSource class implements both java.io.Serializable and javax.naming.Referenceable so an
instance can be configured and then stored in JNDI where available. In order to use this DataSource for your
application's JDBC, you need to get hold of a configured instance:

Example 4.2. Configuring an Atomikos DataSource

 com.atomikos.jdbc.AtomikosDataSourceBean ds =
 new com.atomikos.jdbc.AtomikosDataSourceBean();

 //set the necessary properties
 //see the javadoc documentation of the AtomikosDataSourceBean to
 //get more information on which properties to set and how
 //and see the jta sample programs at
 //http://www.atomikos.com/Main/InstallingTransactionsEssentials
 //for the complete example code

Using the DataSource for transactions is equally simple: just begin a new transaction, get a connection from the
DataSource, and do any SQL you want. When the transaction is committed/rolledback, all SQL is committed/
rolledback as well. The typical code pattern for doing this is shown below.

Programming
Transactional Applications

17

Example 4.3. Using an Atomikos datasource

 boolean rollback = false;
 try {
 //begin a transaction
 utx.begin();

 //access the datasource and do any JDBC you like
 Connection conn = ds.getConnection();
 ...

 //always close the connection for reuse in the
 //DataSource-internal connection pool
 conn.close();

 }
 catch (Exception e) {
 //an exception means we should not commit
 rollback = true;
 }
 finally {
 if (!rollback) utx.commit();
 else utx.rollback();
 }

4.1.3. JDBC: Using an Atomikos Non-XA DataSource
For JDBC vendors that don't support XADataSource, we have a DataSource implementation that allows integration
with Atomikos TransactionsEssentials nevertheless.

It should be clear that this has limitations with respect to recovery: if there is no XA functionality, then
pending transactions can't be recovered after restart or crash of your application. This is no problem if you
only use one database, but it can be a serious data integrity risk if you use two or more databases/systems
within the scope of the same transaction.

Example 4.4. Using an Atomikos Non-XA DataSource

 com.atomikos.jdbc.nonxa.AtomikosNonXADataSourceBean ds =
 new com.atomikos.jdbc.nonxa.AtomikosNonXADataSourceBean();

 //set the necessary properties
 //see the javadoc documentation of the AtomikosNonXADataSourceBean to
 //get more information on which properties to set and how
 //and see the jta sample programs at
 //http://www.atomikos.com/Main/InstallingTransactionsEssentials
 //for the complete example code

The typical code pattern for doing transactions that include work in a AtomikosNonXADataSourceBean is the same
as the one in the previous case.

Programming
Transactional Applications

18

4.1.4. JMS: Using an Atomikos JMS ConnectionFactory
For JMS queues and topics, Atomikos also has a built-in connector represented by the class
com.atomikos.jms.AtomikosConnectionFactoryBean. Similar to our DataSource, instances of this class need a JMS
vendor-specific XAConnectionFactory to work with. Please refer to the javadoc of this class for more information.
A typical usage pattern is show below for queues (topics are very similar).

Example 4.5. Using an AtomikosConnectionFactoryBean

See the examples at http://www.atomikos.com/Main/InstallingTransactionsEssentials for how to use this class.

JMS behaves differently in combination with JTA/XA transactions. In particular:

• Sending a message in a JTA transaction has no effect until commit.

• Messages that are received in a JTA transaction will only be removed from the queue at transaction commit
time.

The consequences of this behaviour are also interesting:

1. The sender and receiver processes of a message always execute in a different transaction (see the figure below):
the sending transaction has to commit before the message is actually transported to the receiver.

2. Because of 1, it is impossible to receive a reply for a message sent in the same transaction.

3. Also because of 1, there is no way to rollback the sending process when the receiver has fatal errors in
processing a request. The sender's transaction has already committed before the receiver even gets the message
with the request.

Always keep these restrictions in mind when using JMS in a JTA/XA transaction. These restrictions
are characteristic of any standard J2EE application that combines JMS and transactions. It is possible to
use Atomikos TransactionsEssentials without being bound by these restrictions, provided that you use

Programming
Transactional Applications

19

the propagation mechanism outlined later in this manual. In that case, you use a regular (non-XA, non-
Atomikos) JMS QueueConnectionFactory and add the transaction propagation to each message that you
send. This way, sending a message is not delayed until commit, the transaction context can be imported at
the receiver, and both ends of the JMS communication link can execute in the same transaction.

4.1.5. JMS: Message-Driven Functionality

Atomikos TransactionsEssentials also contains a feature that is similar to message-driven beans, allowing your
application to process JMS queue messages in a reliable and transactional way. In particular, your application can
register implementations of javax.jms.MessageListener to receive messages in a transaction. There is no need for
developers to know EJB in order to do this.

For more information, see the javadoc about com.atomikos.jms.extra.MessageDrivenContainer as well as the
example programs included in the release.

4.1.6. JMS: Managed Sender Sessions

Sending messages with the benefit of pooled and managed sessions can also be done, by using the
com.atomikos.jms.extra.SingleThreadedJmsSenderTemplate. This class allows you to reuse the same session for
sending multiple messages, and refreshes the session (if necessary) to simplify application-level code. For more
information, please check the javadoc as well as the example programs included in the release.

The com.atomikos.jms.extra.SingleThreadedJmsSenderTemplate is not thread-safe. If you have threaded
code then use com.atomikos.jms.extra.ConcurrentJmsSenderTemplate instead.

4.2. For XA-Level Integration: The JTA
TransactionManager
If you don't want to use the Atomikos connectors for JDBC or JMS, then you can still use our transaction manager,
but you will have to integrate at the level of JTA/XA. This means that you will have to explicitly enlist/delist
XAResource instances with the transaction service (and within each transaction). This section explains how to do
this.

This approach for using Atomikos TransactionsEssentials will only work if the configuration parameter
com.atomikos.icatch.automatic_resource_registration is set to true.

4.2.1. Getting the TransactionManager

Our implementation of javax.transaction.TransactionManager is represented by the class
com.atomikos.icatch.jta.UserTransactionManager. Like in the case of the UserTransaction, you don't
need to do anything special besides constructing an instance of this class. All the rest (transaction service
startup, recovery and shutdown) is handled behind the scenes. If you have multiple instances of this
TransactionManager class then you can use any you like: they are all equivalent to your application.

Programming
Transactional Applications

20

Like UserTransactionImp, the class UserTransactionManager implements both java.io.Serializable and
javax.naming.Referenceable, meaning it can be stored in JNDI where available.

For J2EE applications, the automatic startup mechanism is undesirable since multiple deployed applications
could end up with different transaction engines. This is not recommended, and therefore J2EE application
programmers should use the class com.atomikos.icatch.jta.J2eeTransactionManager instead: this class
has the same functionality except that it doesn't trigger automatic startup of the transaction engine. In that
case, you should also use the Atomikos control panel web-application (included in the installation) to
automatically initiate transaction service startup and shutdown when the application server starts/stops.
Like its sibling class, the J2eeTransactionManager implementation can also be bound in JNDI where
available.

4.2.2. Typical Code Pattern for JTA/XA
For JTA/XA integration, the recommended code pattern is shown below. The case is illustrated for an
XADataSource, but other XA-capable resources work the same way. The essence of the example is that you need
to start a transaction, enlist/delist one or more XAResource instances, and then commit or rollback. This is more
complicated than if you were using our JDBC or JMS adapters (as in the previous case), because our adapters do
most of this for you. Please see examples at http://www.atomikos.com/Main/InstallingTransactionsEssentials for
complete and working source code.

Example 4.6. Typical pattern of JTA/XA usage

 //GENERIC: get the transaction manager
 com.atomikos.icatch.jta.UserTransactionManager tm =
 new com.atomikos.icatch.jta.UserTransactionManager();

 //the transaction service will startup and recover whenever the
 //tm is used for the first time

 //SPECIFIC FOR JDBC: get the XADataSource in a vendor-specific way
 //this is normally done inside a connection pool
 XADataSource xads = ...//vendor-specific, see your JDBC vendor docs for info
 XAConnection xaconn = xads.getXAConnection();

 boolean rollback = false;
 try {
 //GENERIC: begin and retrieve tx
 tm.begin();
 Transaction tx = tm.getTransaction();

 //SPECIFIC FOR JDBC: get the XAResourc from the JDBC connection
 XAResource xares = xaconn.getXAResource();

 //GENERIC: enlist the resource with the transaction
 //NOTE: this will only work if you set the configuration parameter:
 //com.atomikos.icatch.automatic_resource_registration=true
 //or, alternatively, if you use the UserTransactionService
 //integration mode explained later
 tx.enlistResource (xares);

Programming
Transactional Applications

21

 //SPECIFIC FOR JDBC: access the database, the work will be
 //subject to the outcome of the current transaction
 ...

 //GENERIC: delist the resource
 tx.delistResource (xares , XAResource.TMSUCCESS);

 }
 catch (Exception e) {
 rollback = true;
 throw e;
 }
 finally {
 //GENERIC: ALWAYS terminate the tx
 if (rollback) tm.rollback();
 else tm.commit();

 //SPECIFIC FOR JDBC: only now close the connection
 //i.e., not until AFTER commit or rollback!
 xaconn.close();
 }

Note that the XAConnection in the code fragment above was not closed until AFTER the transaction
committed/rolledback. This is necessary because the transaction manager needs the connection to stay open
until after two-phase commit is done. Otherwise, there is no way that the transaction manager can talk to
the database any more (notice that the transaction manager is using the XAResource instance - which in
turn relies on the XAConnection). If this scenario is unrealistic for your application, then we recommend
that you use the UserTransactionService approach outlined in the next section.

4.3. For Sophisticated Needs: The Atomikos
UserTransactionService
This is the most sophisticated and flexible approach for using Atomikos TransactionsEssentials: it gives you full
control over almost any aspect of the transaction service. In this guide, we only explain the basics to get you started.
More information can be found in the Atomikos API Guide. This section is outlined as follows:

• Getting a UserTransactionService Instance

• Overriding static propertie

• Explicit Resource Registration and Recovery

• Registering a LogAdministrator

• Explicit Startup and Shutdown

• Getting the UserTransaction

• Getting the TransactionManager

Programming
Transactional Applications

22

4.3.1. Getting a UserTransactionService Instance
The interface com.atomikos.icatch.config.UserTransactionService is a proprietary interface of Atomikos. The
reason for this is simply that no current standard defines how to setup and initialize a transaction service. This
interface is the key to doing the things that are outlined in this section; it is essential for using some of the more
sophisticated features of Atomikos TransactionsEssentials. Getting an instance that implements this interface is done
by constructing an object of class com.atomikos.icatch.config.UserTransactionServiceImp:

Example 4.7. Constructing the UserTransactionService object

 com.atomikos.icatch.config.UserTransactionService uts =
 new com.atomikos.icatch.config.UserTransactionServiceImp();

Like all the transaction manager objects we have discussed so far, you can have as many instances of this
class as you like. They are all equivalent - except for doing explicit startup of the transaction service (which
can depend on instance-specific properties, as we will see shortly). Therefore, Atomikos recommends that
you limit your number of instances to one.

4.3.2. Overriding static properties
Overriding static properties is done via an object of type com.atomikos.icatch.config.TSInitInfo. You can create such
an object by calling the method createTSInitInfo on the UserTransactionService object:

Example 4.8. Creating a TSInitInfo object

 com.atomikos.icatch.config.TSInitInfo info = uts.createTSInitInfo();

 //use the info object to supplement or override the static configuration file
 info.setProperty ("com.atomikos.icatch.checkpoint_interval" , "2000");

You will also need an instance of TSInitInfo for initializing (starting) the transaction service (see later in this
section).

4.3.3. Explicit Resource Registration and Recovery

The procedures outlined in this subsection only work correctly if the transaction service is initialized with
parameter com.atomikos.icatch.automatic_resource_registration set to false!!!

One of the most interesting features of the UserTransactionService is that you can explicitly register resources for
recovery and online transaction processing. In other words, this allows you to gain fine-grained control over what
resources should be recovered, how they should be recovered or used, and when recovery should happen.

Explicit resource registration is especially recommended in those cases where the vendor-specific
XAResource implementations are not fully JTA/XA compliant. The most common deviation from the

Programming
Transactional Applications

23

specification is that the XAResource.isSameRM() method does not work correctly. This can lead to
warning messages in the transaction manager's console file when you use one of the previous approaches to
programming with Atomikos TransactionsEssentials.

The types of resources that are supported for this approach are the following:

• JDBC/XADataSource: use class com.atomikos.datasource.xa.jdbc.JdbcTransactionalResource.

• JMS/XAQueueConnectionFactory: use class com.atomikos.datasource.xa.jms.JmsTransactionalResource.

• JCA: use class com.atomikos.datasource.xa.jca.JcaTransactionalResource.

Note that there is no equivalent for NonXADataSource here: using non-XA JDBC drivers is not
recoverable, so explicit registration is not relevant for such drivers.

Each of these resource types is similar to the others, the only real difference is that they use a different type of
underlying connector to get XAConnection objects from when needed. This is all internal to the implementations
and is of no further concern here. All that matters is that you know how to construct an instance when needed, and
how to register. The following shows how to do this for JDBC; the other cases are completely analogous:

Example 4.9. Explicitly registering a (JDBC) resource for recovery.

 //Get a vendor-specific instance of an XADataSource
 XADataSource xaDataSource = ... //vendor-specific for your JDBC driver

 //construct a corresponding resource that uses the XADataSource
 //for recovery and normal transaction processing; give it a
 //unique name for recovery and identification in the transaction service
 JdbcTransactionalResource jdbcResource =
 new JdbcTransactionalResource (
 "com.mycompany.unique.name" ,
 xaDataSource);

 //VERY IMPORTANT: register the resource with the transaction service
 //to enable recovery; must be done BEFORE you startup!
 uts.registerResource (jdbcResource);

Add a separate resource for each connector (DataSource, QueueFactory or JCA resource adapter) that
you expect to use. While you can also register resources after startup, you can expect better and smoother
workings of the transaction service when you register before startup.

This shows the essence of what you should know about resource registration. More information about these classes
can be found in the javadoc included in the installation.

4.3.4. Registering a LogAdministrator
An additional feature of Atomikos TransactionsEssentials is that you can optionally register one or more
instances of com.atomikos.icatch.admin.LogAdministrator. Instances of this interface are supplied with a

Programming
Transactional Applications

24

com.atomikos.icatch.admin.LogControl This is an interface towards the transaction manager that outlines
administrative tasks that are available when the transaction service is running. The main purpose of these tasks is
purging the logs from old transactions, and forcing problematic transactions to terminate one way or another.

A couple of standard implementations of LogAdministrator are supplied out-of-the-box by Atomikos: a
JmxLogAdministrator for JMX administration environments, a SimpleLogAdministrator for general UI
environments, and a LocalLogAdministrator for Swing administration of the transaction service. By registering
an instance of one of these, you will be able to retrieve the LogControl after startup, and get access to the
administration features of the transaction service. See the Atomikos API guide for more information.

4.3.5. Explicit Startup and Shutdown

Having come this far, we can now look at how to perform explicit startup and shutdown of the transaction service.
Going back to the UserTransactionService instance gotten earlier, the following illustrates how to do this:

Example 4.10. Explicit startup and shutdown

 UserTransactionService uts = ...//see earlier
 TSInitInfo info = uts.createTSInitInfo();

 //override properties, register resources, register logadministrator
 ...

 //startup of transaction service
 uts.init (info);

 //here, the transaction service is running and has recovered all resources
 //registered before

 //NOTE: any resource you register will still be recovered, but this is not
 //recommended in all cases

 //the application is ready for doing ebusiness
 ...

 //shutdown the transaction service,
 //but wait for active transactions to complete
 uts.shutdown (false)
 //if you don't want to wait, use uts.shutdown (true);

You can call init and shutdown as many times as you want without exiting your application. For best
results, we recommend that you use the same UserTransactionService instance while doing this.

4.3.6. Getting the UserTransaction

The UserTransactionService can be used to get a javax.transaction.UserTransaction (which should only be used
after startup):

Programming
Transactional Applications

25

Example 4.11. Getting the UserTransaction via the UserTransactionService

 //startup the transaction service
 //uts.init (info);

 //now, the UserTransaction is available as follows:
 javax.transaction.UserTransaction utx = uts.getUserTransaction();

Like all our JTA objects, this UserTransaction can be bound in JNDI where available.

Although the previously outlined approach of using an instance of
com.atomikos.icatch.jta.UserTransactionImp will still work, this is not recommended here: doing so
could lead to accidental startup of the transaction service (by the auto-initialization feature) and that could
interfere with the intention of explicitly controlling startup through the UserTransactionService.

4.3.7. Getting the TransactionManager
Likewise, javax.transaction.TransactionManager can be gotten like this (and should also be used after startup only):

Example 4.12. Getting the TransactionManager via the UserTransactionService

 //startup the transaction service
 //uts.init (info);

 //now, the TransactionManager is available as follows:
 javax.transaction.TransactionManager tm = uts.getTransactionManager();

Again, this can be bound in JNDI where available.

4.3.8. Questions

4.3.8.1. Question 1

If you don't need to use your own connection pooling for JDBC, then what is the easiest way to start using
TransactionsEssentials in your application:

1. Construct an instance of com.atomikos.icatch.jta.UserTransactionImp

2. Construct an instance of com.atomikos.icatch.jta.UserTransactionManager

3. Construct an instance of com.atomikos.icatch.jta.UserTransactionServiceImp

4.3.8.2. Question 2

If you don't want to use Atomikos connection pooling, then what is the easiest way to start using Atomikos
TransactionsEssentials in your application:

Programming
Transactional Applications

26

1. Construct an instance of com.atomikos.icatch.jta.UserTransactionImp

2. Construct an instance of com.atomikos.icatch.jta.UserTransactionManager

3. Construct an instance of com.atomikos.icatch.jta.UserTransactionServiceImp

4.3.8.3. Question 3

Which of the following require the use of com.atomikos.icatch.jta.UserTransactionServiceImp?

1. Explicitly registering resources for recovery and online processing

2. Explicit control over startup and shutdown of the transaction service

3. Export or import a transaction in RMI/IIOP networks

4. Enlist/delist of XAResource instances

27

Appendix A. Answers

A.1. Chapter 2: Answers

A.1.1. Question 1

You can not control the joint outcome of a database update and a JMS message publication by merely ordering the
executions. For instance, if you do a successful database update first and then try to send a JMS message, then what
do you do if the JMS part fails? You could argue that the JDBC and the JMS allow you to explicitly control commit
and rollback, but that does not change the real problem: in what order should the commits of the database and the
message send be done? If you commit the database first, there is no way to go back if the later JMS commit fails.
A similar argument shows that the JMS can not be committed first either. Controlling the order of executions or the
order of commits is not a solution; that is why two-phase commit is used.

A.1.2. Question 2

The exception is of type HeuristicMixedException. The transaction manager is cut off from the in-doubt database,
so it does not know whether the database will make a heuristic decision or not, and if it does then it could be either
commit or rollback. A violation of the requirement that all resources have the same outcome is possible.

A.1.3. Question 3

The method setRollbackOnly can be called almost anytime. The method rollback should only be called after all
resources that were enlisted have also been delisted accordingly. Otherwise, XA-level errors may occur during
rollback.

A.1.4. Question 4

If a SQLException happens in a database update, there is a possibility that the database state for the active
transaction is corrupt or does not correspond to what is expected from the point of view of the application. The
transaction should be rolled back to make sure that the database is restored to the previous and correct state.

A.1.5. Question 5

The JTA transaction manager associates the thread to the transaction you create. This means that if you call
TransactionManager.begin() at the beginning of the method invocation then the executing thread has a JTA
transaction. If you don't terminate this transaction then it will become a pending active transaction, subject to
JTA rollback after timeout (and this will happen). Before the timeout, other requests may be executed in the same
thread. If that happens then the second request's TransactionManager.begin() will create a subtransaction of the still
pending transaction. So even if the second invocation calls commit, this will be a commit of a subtransaction, whose
effects will not become permanent until the parent transaction commits. But the latter will not happen because the
parent is a pending active transaction that will be rolled back if it times out. This is illustrated in the picture below.

Answers

28

A.2. Chapter 3: Answers

A.2.1. Question 1

The logs will be written in the directory where you start your application. See the sample configuration file listing,
which shows the default values. These are the values used if no other information is available.

A.2.2. Question 2

The average log file size will be larger. The checkpoint interval is the number of writes to the sequential log file
before this file is cleaned up, so if this number is higher then the average log file size will increase as well. The
cleanup encompasses purging the log by deleting information about terminated transactions.

A.2.3. Question 3

The parameter com.atomikos.icatch.service needs to be specified in every configuration file.

A.3. Chapter 4: Answers

A.3.1. Question 1

The easiest way is to construct an instance of com.atomikos.icatch.jta.UserTransactionImp (and use this in
combination with AtomikosDataSourceBean).

Answers

29

A.3.2. Question 2
Construct an instance of com.atomikos.icatch.jta.UserTransactionManager and make your application call
enlistResource/delistResource for each XAResource that you access.

A.3.2.1. Question 3

Which of the following require the use of com.atomikos.icatch.jta.UserTransactionServiceImp?

1. Explicitly registering resources for recovery and online processing: yes

2. Explicit control over startup and shutdown of the transaction service: yes

3. Export or import a transaction in RMI/IIOP networks: yes

4. Enlist/delist of XAResource instances: no: our UserTransactionManager can do that

30

Appendix B. Using Atomikos
TransactionsEssentials in (Web)
Application Servers
Atomikos TransactionsEssentials can also be used in web containers or application servers. Configuration is
straightforward if you are using Spring (see the examples): you merely need to configure Spring to use Atomikos
TransactionsEssentials. Tomcat integration is built-in for commercial subscribers to ExtremeTransactions - see
http://www.atomikos.com/Main/BuyOnline for details.

31

Appendix C. Troubleshooting
For searching known problems and solutions, or in order to conctact technical support, please go to http://
www.atomikos.com and login to our community forums - or (if you are a support customer) send an email to
support@atomikos.com to get professional support.

32

Appendix D. References
• http://java.sun.com: Sun's Java website with the JTA, JDBC and JMS specifications and extra information.

• http://www.atomikos.com: Atomikos' website; please check regularly for updates and support information.

• Distributed Transaction Processing: The XA Specification (ISBN 1-872630-24-3). Published by The Open
Group (http://www.opengroup.org).

