
Atomikos™
ExtremeTransactions™ Guide

Atomikos ExtremeTransactions Guide
Copyright © 2008 Atomikos

iii

Table of Contents
1. Introduction ... 1

1.1. Who Should Read This Guide .. 1
1.2. Prerequisite Reading ... 1
1.3. System Requirements .. 1
1.4. Installation Instructions .. 1
1.5. The Impact of SOA on Transactions .. 1
1.6. Architecture ... 2

1.6.1. Features Inherited from TransactionsEssentials™ ... 2
1.6.2. TCC™ ... 2
1.6.3. Extending Transactions Across the Network ... 3

2. Writing Transactional Services with ExtremeTransactions™ .. 4
2.1. Intra-VM Transactions: XTP/GRID Architecture .. 4
2.2. Inter-VM Transactions: Composite Applications and SOA ... 5

2.2.1. The SOA Problem Illustrated ... 5
2.2.2. Solution 1: ExtremeTransactions™ JTA Support ... 7
2.2.3. Solution 2: ExtremeTransactions™ TCC™ Support ... 8

2.3. The Atomikos™ Try-Confirm-Cancel (TCC™) API: Distributed Service Transactions Without XA
... 9

2.3.1. Programming TCC™ Applications .. 10
2.3.2. Compatible Protocols .. 21

3. Configuring ExtremeTransactions™ Behaviour ... 22
3.1. Enabling ExtremeTransactions™ ... 22
3.2. RMI-JRMP Configuration .. 22
3.3. RMI-IIOP Configuration .. 22
3.4. Disabling RMI ... 23
3.5. Setting Client Trust Preferences .. 23
3.6. Enabling Web Service Transactions ... 23

4. Mistaken Alternatives for ExtremeTransactions™ .. 26
4.1. Exposing Cancel Operations as a Business Service ... 26
4.2. Using Reliable Messaging .. 26

A. Glossary ... 27
B. More Information ... 28

iv

List of Figures
1.1. ExtremeTransactions Architecture ... 2
2.1. XTP GRID architecture with intra-VM transactions .. 4
2.2. Example of a composite application SOA workflow ... 6
2.3. Example of a composite application with error logic ... 7
2.4. TCC: focus on the happy path .. 8
2.5. TCC™ example: airline reservation service ... 10
2.6. TCCService State Diagram ... 14
2.7. Distributed TCC™ execution between two transactional services ... 16
2.8. Distributed TCC™ prepare phase .. 17
2.9. Distributed TCC™ confirmation phase ... 18
2.10. Distributed TCC™ cancelation phase ... 19
2.11. Distributed TCC™ failure .. 20

v

List of Examples
2.1. TCC™ example: an airline reservation web service .. 10
2.2. Example of a TCC™ payment service .. 11
2.3. Distributed TCC™ Execution ... 16
2.4. Distributed TCC™ Prepare ... 17
2.5. Distributed TCC™ Confirmation ... 18
2.6. Distributed TCC™ Cancelation ... 19
2.7. Distributed TCC™ Failure ... 20
3.1. Configuring the ImportingTransactionHandler on the receiving side ... 23
3.2. Configuring the ExportingTransactionHandler on the client side .. 25

1

Chapter 1. Introduction
This guide introduces you to the revolutionary transaction technology incorporated into ExtremeTransactions™, the
commercial version of our TransactionsEssentials™ core.

Distributed transactions have always been a debatable topic where the numerous opponents typically used to
complain about the poor characteristics of traditional ACID standards in this area (where ACID means Atomic,
Consistent, Isolated and Durable - see the Glossary in appendix).

This guide will show you how times have changed: thanks to Atomikos™, it is now possible to build distributed
(and even asynchronous) systems with transactional guarantees without having to resort to the limitations of
traditional ACID technologies (although you can still do that if you want).

1.1. Who Should Read This Guide
You should read this guide if you are interested in any of the following:

• Learning about transactional services and GRIDs and what they can do for you.

• Enabling your web services for ExtremeTransactions™.

• Making your existing JTA/XA transactions participate in distributed service transactions.

• Programming state-of-the-art, compensation-based services (departing from ACID).

• Supporting distributed transactions without the classical XA support (unlike ACID).

1.2. Prerequisite Reading

You can read to this guide to grasp the concepts, but in order to really implement services
with ExtremeTransactions™ you should be familiar with the concepts explained in the guides
AtomikosTransactionsEssentialsGuide and AtomikosAPISpecification. If you haven't read those yet, please
do so first.

1.3. System Requirements
The following platform is required for ExtremeTransactions™:

• Java 1.4 or higher.

• At least 128 MB of RAM.

1.4. Installation Instructions
Please see the installation instructions in the getting started pages.

1.5. The Impact of SOA on Transactions
A service-oriented architecture requires fundamental changes from the traditional architectural viewpoint: traditional
monolithic applications are (by definition) built in standalone mode, meaning that distributed transactions are rarely
needed. By contrast, services are meant to be only a part of a composite application.

Introduction

2

The result: many service-based applications of the new generation will be distributed by default. This drastically
overturns the traditional architectural requirements in that distributed transactions are now more of a necessity than
ever before. ExtremeTransactions™ answers these new needs.

1.6. Architecture
The architecture of ExtremeTransactions™ is shown below, along with its relationship to TransactionsEssentials™.

Figure 1.1. ExtremeTransactions Architecture

The main features offered by ExtremeTransactions™ (as shown on the diagram) are the following:

• JTA/XA support: you can start and commit/rollback transactions according to Sun's JTA API.

• JDBC support: connection pooling and JTA/XA-aware datasource implementations.

• JMS support: message-driven receivers and senders - even outside the application server.

• TCC™ support: our revolutionary compensation-based transaction model for loose coupling. With TCC™, you
can focus on the happy path of your workflow logic, and let us take care of the rest.

• Extending transactions across the network: the scope of rollback and commit can be extended to other processes,
called by RMI, IIOP, SOAP or almost any other protocol.

1.6.1. Features Inherited from TransactionsEssentials™
ExtremeTransactions™ is the commercial extension of TransactionsEssentials™ so it contains all the functionality
offered by the latter:

• JTA/XA support for ACID transactions

• JDBC support

• JMS support

1.6.2. TCC™
One of the main innovations found in ExtremeTransactions™ is support for the TCC™ (Try-Confirm/Cancel)
model. As explained later in this guide, TCC™ is a paradigm for the construction of transactional services while

Introduction

3

preserving the capabilities for loose coupling and asynchronous interactions. This way, ExtremeTransactions™
effectively eliminates the main argument against a transactional SOA: there is no more extended locking of data
(required for traditional two-phase commit), and the use of local transactions suffices in order to get distributed
consistency.

1.6.3. Extending Transactions Across the Network
A transaction started in one application (or service, depending on the context) can optionally be extended
("propagated") across the network. As a result, rollback or commit of the original transaction will include all the
work done in all of the processes to where the transaction was propagated. This mechanism works both for classical
JTA/XA transactions as well as for networked TCC™ services.

This extension mechanism allows for the construction of transactional composite applications; the TCC™ paradigm
avoids tight coupling and eliminates traditional locking problems on the data.

4

Chapter 2. Writing Transactional
Services with ExtremeTransactions™

2.1. Intra-VM Transactions: XTP/GRID
Architecture
An intra-VM transactional service GRID is usually based on JMS for receiving messages from some message
bus and then inserting some results into a database via JDBC. Gartner™ has termed this style of processing XTP
(extreme transaction processing). The usual architecture is shown below.

Figure 2.1. XTP GRID architecture with intra-VM transactions

ExtremeTransactions™ guarantees that the messages (requests) are either still on the message bus, or in the
database, but nothing in between. In particular, ExtremeTransactions™ avoids message loss (missing requests) or
duplicate delivery.

For examples of applications that follow this architecture, see the JMS examples in the download of
ExtremeTransactions™.

Writing Transactional Services
with ExtremeTransactions™

5

It is important to realize that for this architecture, the typical scope of a transaction is the processing of
individual (queued) requests. In particular, the sender of a request has no control over the outcome of its
processing. If such control is desired then we recommend our TCC™ approach instead.

2.2. Inter-VM Transactions: Composite
Applications and SOA
SOA and the composite application (an application composed of multiple related service calls to different services)
can require something more complex than the previous architecture. This section outlines the problems encountered,
and two solutions offered by ExtremeTransactions™.

2.2.1. The SOA Problem Illustrated

SOA applications are different from the previous case: the transaction scope effectively spans multiple services and
clients. For a composite application, this means that a transaction can extend over the entire workflow. An example
of such a workflow is shown below.

Writing Transactional Services
with ExtremeTransactions™

6

Figure 2.2. Example of a composite application SOA workflow

So far we have only shown the happy path: as long as no failures or crashes happen, this will work. However, in
the realistic case of failures or crashes, the workflow of a composite application becomes a lot more complex: not
only do we need to add undo logic in the workflow model, in addition we also need to model the inter-dependencies
among undo operations and the right order. Finally, even more complexity comes into play when one considers the
possibility of failures in the undo logic itself and when to retry the undo.

The result is often a composite application that becomes more complex than it should be. Moreover, the reliability
goes down a long way due to the increased complexity, decreased testability and worse maintainability. This does
not scale. The figure below shows this approach.

Writing Transactional Services
with ExtremeTransactions™

7

Figure 2.3. Example of a composite application with error logic

2.2.2. Solution 1: ExtremeTransactions™ JTA Support

One way to solve the problem is by making the whole workflow an extended (distributed) JTA transaction. While
this works from a technical viewpoint, it does not scale outside the enterprise: database locks are maintained for
the entire duration of an extended transaction, and this exposes the services to denial-of-service attacks and other
availability hazards. Consequently, this solution is only fit for intra-enterprise cases where there is a centralized
point of control.

Examples of this approach are shown in the installation folder of ExtremeTransactions™, under examples/
j2se/rmi.

Writing Transactional Services
with ExtremeTransactions™

8

2.2.3. Solution 2: ExtremeTransactions™ TCC™ Support

With TCC, the workflow logic of a composite application can be reduced to its happy path. All other logic is moved
to the service implementation: the services are now offering both cancel and confirm logic as well. This logic is
moved out of the workflow (along with all interdependencies), thereby removing all complexity from the workflow
itself. This is shown below...

Figure 2.4. TCC: focus on the happy path

At the expense of some additional (and reusable) logic in each service, the workflow is simplified enormously: there
are no more undo calls to model/program, and no dependencies to take care of. The developers don't have to take
into account all possible failure paths, nor do they have to track where things go wrong and what to do next. All
this is handled by ExtremeTransactions™. In addition, the failure of undo operations is no longer a worry of the
application developer: all this is handled by ExtremeTransactions™.

Writing Transactional Services
with ExtremeTransactions™

9

Examples of this approach are shown in the installation folder of ExtremeTransactions™, under examples/
j2se/tcc.

2.3. The Atomikos™ Try-Confirm-Cancel (TCC™)
API: Distributed Service Transactions Without XA

This API is a revolutionary approach to programming distributed transactional services (which can be
exposed either as web services or as classical RMI/IIOP services). It combines the best of two worlds:

• The loosely-coupled style of messaging platforms, by supporting asynchronous and long-duration
communication patterns.

• The reliability guarantees of transactions, by offering the guarantee that a distributed (and possibly
asynchronous) task is either canceled or confirmed in its entirety.

Invented by Atomikos, this approach is new in the way that distributed transactions are structured: instead of
requiring one long ACID transaction that lasts until commit or rollback, TCC™ splits up a web service transaction
into three distinct phases, each optionally involving separate and short-lived ACID transactions:

• The TRY phase: from the viewpoint of a service provider, this is where the normal transactional service request
is processed in a tentative manner (i.e., subject to later confirmation or cancelation) and in one short local ACID
transaction (which can even be a non-JTA transaction such as in JDBC™). None of the classical distributed and
long-lived locks are required to do this. At the end of this phase, the business logic reflects a tentative result that
will become permanent only after the next phase (either CONFIRM or CANCEL).

• The CONFIRM phase: if the overall web service transaction commits, then the TCC™ service implementation
receives a confirmation notification (this corresponds to the commit in the two-phase commit protocol). The
interesting part is that this confirmation may trigger business-level processing to update the tentative business
state to confirmed (again, this update can be a purely local transaction such as in JDBC™). The TCC™
paradigm only requires local updates during this phase: any remote confirmation is done by the protocols in the
background.

• The CANCEL phase: if the overall web service transaction does rollback then the TCC™ service implementation
receives a cancelation notification (this corresponds to the rollback in the two-phase commit protocol). Like
for confirmation, this notification may trigger business-level processing to update the tentative business state
to canceled. Again, only local updates are required; any remote cancelation is done by the protocols in the
background.

Writing Transactional Services
with ExtremeTransactions™

10

Example 2.1. TCC™ example: an airline reservation web service

Figure 2.5. TCC™ example: airline reservation service

As an example, consider an airline reservation web service. This service offers online seat reservations that
can be booked in a transactional way. The TRY phase inserts the reservation into the database. Upon commit,
the CONFIRM phase explicitly updates the reservation to being valid. Otherwise, in the event of CANCEL, the
reservation is marked to be canceled; because the business logic is aware that only confirmed reservations should be
taken into account, this achieves transactional consistency in a loosely-coupled way.

2.3.1. Programming TCC™ Applications

The TCC™ paradigm is ideal for reservation-style (web) services, where business resources (seats, tickets, ...)
have to be reserved for a short or large period of time until the reservation is confirmed or canceled. You can
view TCC™ as two-phase commit at the business level: the tentative (prepare), canceled (rollback) and confirmed
(commit) states are visible (and known) by the business logic. Tentative transactions are indeed accessible in the
database(s), and should be ignored by the business if not relevant. The system offers the guarantee that tentative
transactions are temporary, so resources are always released eventually. Indeed, a TCC™ transaction is either
confirmed (if it succeeds) or canceled (if it fails or times out). Either way, the corresponding business logic is
triggered (CONFIRM or CANCEL) to release any business-level resources associated with the tentative state.

The TCC™ API is defined in the package com.atomikos.TCC and implemented by the package
com.atomikos.icatch.TCC. See the javadoc and the samples contained in the release for more
details on the TCC™ model.

Writing Transactional Services
with ExtremeTransactions™

11

2.3.1.1. Recommended Pattern for TCC™ Services

The TCC™ paradigm corresponds to two-phase commit at the application level. This means that the likelyhood of
failure during CANCEL or CONFIRM should be minimized (since these correspond to failures during the second
phase of two-phase commit). Therefore, we recommend that your TCC™ services be developed along the following
lines:

• TRY: reserve the necessary resources to make CONFIRM succeed. For instance, if you are selling something
then TRY would check and decrement stock availability already, so CONFIRM can't run into availability
problems.

• CONFIRM: make the work of TRY permanent, i.e. convert the reservation into a purchase (in the case of
selling).

• CANCEL: release the reserved resources again. In the selling example, this would mean returning the reserved
items to the available stock.

2.3.1.2. Programming the TCC™ Service

TCC™ service implementations should implement the interface com.atomikos.TCC.TCCService. This
interface exposes the following methods to implement:

• confirm: the logic associated with confirmation. Implement this method to confirm the reservations made in
the try-phase.

• cancel: the logic associated with cancelation. Implement this method to cancel the reservations made in the
try-phase.

• recover: callback for recovery; this method is called by the transaction service when it recovers TCC™
transactions after a crash or restart. Any required system-level resources needed for cancel or confirm can be re-
acquired in this method.

In addition to these termination callbacks (required by the transaction service), it is up to the application itself
to implement the logic for the try-phase. As far as the transaction service is concerned, the try-phase starts when
register is called, and ends when one of completed or failed is invoked by the application. An example
TCC™ service implementation is shown below (the complete example is included in the demos for the release).

Example 2.2. Example of a TCC™ payment service

package payment;

import java.sql.Connection;
import java.sql.SQLException;
import java.sql.Statement;

import com.atomikos.icatch.HeurCommitException;
import com.atomikos.icatch.HeurRollbackException;
import com.atomikos.TCC.TCCException;
import com.atomikos.TCC.TCCService;
import com.atomikos.TCC.TCCServiceManager;

Writing Transactional Services
with ExtremeTransactions™

12

public class PaymentTCCService implements TCCService
{
 private TCCServiceManager TCCmgr;
 private long timeout;

 public PaymentTCCService (TCCServiceManager TCCmgr ,
 long timeout)
 {
 this.TCCmgr = TCCmgr;
 this.timeout = timeout;

 //IMPORTANT: register with the system for recovery callbacks
 //to assist with application-level recovery of previous
 //service invocations

 TCCmgr.registerForRecovery (this);
 }

 public void tryPayment (String cardNo , int amount)
 throws Exception
 {
 //start (register) the work for cancel/confirm
 //and obtain the id to use as reference
 String id = TCCmgr.register (this , timeout);

 try {
 //perform the work (i.e., the business logic)
 //the application should use the id to
 //identify the work for later confirm/cancel
 Connection conn = PaymentDbUtils.getConnection();
 Statement s = conn.createStatement();
 s.executeUpdate ("insert into PAYMENTS values (" +
 " '" + id + "' , '" + cardNo + "' ," + amount + "," +
 " 'PENDING')");

 conn.close();
 //mark the work as completed in the system
 //to trigger the cancel/confirm callbacks
 TCCmgr.completed (id);

 } catch (Exception e) {
 e.printStackTrace();
 //on any exception: mark the work as failed
 //so cancel is the only possible callback
 TCCmgr.failed (id);
 }
 }

 public void confirm (String id)
 throws HeurRollbackException, TCCException
 {

Writing Transactional Services
with ExtremeTransactions™

13

 try {
 Connection conn = PaymentDbUtils.getConnection();
 Statement s = conn.createStatement();
 s.executeUpdate (
"update PAYMENTS set status = 'CONFIRMED' where key = '" + id +"'");
 conn.close();
 } catch (SQLException e) {
 e.printStackTrace();
 //optional: throw TCCException to retry confirmation
 throw new TCCException();
 }

 }

 public void cancel (String id)
 throws HeurCommitException, TCCException
 {
 try {
 Connection conn = PaymentDbUtils.getConnection();
 Statement s = conn.createStatement();
 //set status to canceled; alternatively, we could also
 //choose to delete the payment row instead; this depends
 //on the business-specific model of cancelation
 s.executeUpdate (
"update PAYMENTS set status = 'CANCELED' where key = '" + id +"'");
 conn.close();
 } catch (SQLException e) {
 e.printStackTrace();
 //optional: throw TCCException to retry cancelation
 throw new TCCException();
 }

 }

 public boolean recover (String id)
 {
 //check if the id is one of our work identifiers
 //return true if so

 }

}

The following state diagram illustrates the relevant TCCService states and their transitions.

The invocation of cancel or confirm are guaranteed to happen only after the try-phase is over (i.e.,
after the application calls either completed or failed).

Writing Transactional Services
with ExtremeTransactions™

14

Figure 2.6. TCCService State Diagram

The figure above shows the relevant states for TCC™ instances, and the possible transitions. For clarity, the
transitions initiated by the transaction system are shown in black arrows, whereas the service-generated transitions
are shown in red. More precisely: the black arrows represent method calls that the TCCService instance will receive
upon the transaction service's initiative. The relevant states are the following:

• Trying: the TCC™ instance is executing the tentative service implementation. This state is entered after the
application calls register on the TCCServiceManager. The transaction service guarantees that there will
be no interleaving calls of cancel or confirm. In this state, the application's thread is associated with the
activity (this allows easy propagation via the JAX-RPC handlers).

• Suspended: this state is reached when the application's thread is no longer associated with the transaction
(activity). This state is an intermediate state to change the thread association of the application. It is up to the
application to reach this state, by calling suspend on the TCCServiceManager. More information on this
technique will follow later.

• TryFailed: this state is reached after the Trying state fails (indicated by the application calling the failed
method of the TCCServiceManager). In this state, the transaction service will later call cancel.

• Tentative: this state is reached only after the Trying phase finishes without errors (as indicating by a call to
completed on the TCCServiceManager). This is the only state in which confirm can ever be called, but
only if the global transaction (activity) commits. In case of global transaction rollback, cancel will be called.

• Confirming: the instance is in this state when confirm has been called and is still executing. If a
TCCException happens then the TCC™ instance returns to the Tentative state, and confirm will be retried
later.

Writing Transactional Services
with ExtremeTransactions™

15

• Canceling: the instance is in this state when cancel has been called and is still executing. If a
TCCException happens then the TCC™ instance returns to the Tentative state, and cancel will be retried
later.

• Confirmed: if the confirmation is successful (no exceptions) then this state is reached. This state is also reached
when cancel finds the business logic to be heuristically confirmed by intermediate database administration
interventions.

• Canceled: if the cancelation is successful (no exceptions) then this state is reached. This state is also reached
when confirm finds the business logic to be heuristically canceled by intermediate database administration
interventions.

What about the recover method? Actually, this method is only called for recovered TCC™ instances,
and can only be followed by either cancel or confirm. The only thing that recover should do is
ensure that cancel and/or confirm can do their work, be re-acquiring any resources if needed. Most of
the time, this method can be left empty. Note that TCC transactions are recoverable as soon as they enter
the TRY phase. This guarantees that pending work is correctly recovered and terminated after a crash or
restart.

2.3.1.3. Executing TCC™ Services

The (tentative, try-phase) execution of TCC™ services is started by calling register on the
com.atomikos.icatch.TCC.UserTCCServiceManager, the default implementation of
com.atomikos.TCC.TCCServiceManager. This method returns a java.lang.String identifier for the
work; this identifier will be used as an argument for termination.

The TCCServiceManager class should be initialized with the appropriate TCCService
implementation (provided by the application) before it can be used. This is done via an invocation of the
registerForRecovery method. For recovery, it is highly recommended that this initialization be done
as soon as possible after startup of the application.

Once registered, it is up to the application to do any work that is subject to transactional termination. For
convenience, the executing thread is associated with the activity (transaction). For remote calls, this allows the
activity to be propagated with the built-in JAXRPC handlers. In case the application wants to switch threads for the
activity, the suspend and resume methods can be used to manage the thread associations.

As soon as the try-phase is over, the application should call either completed (if successful) or failed (if
erroneous) with the correlation identifier returned by register. For root activities, the entire, possibly distributed
activity is then terminated in a consistent manner by the underlying transaction service. In other words, the system
calls either cancel or confirm on each participating TCCService implementation in a consistent way.

Writing Transactional Services
with ExtremeTransactions™

16

Example 2.3. Distributed TCC™ Execution
The following illustration shows a sample distributed TCC™ execution between two transactional services.

Figure 2.7. Distributed TCC™ execution between two transactional services

The following steps are displayed:

1. The application in service 1 registers with the transaction service. Because there is no pre-existing activity yet,
a new (root) activity is created for this service (not shown). The identifier id is returned for this activity. Service
1 can now perform the try-phase of its work.

2. First, service 1 chooses to update its local database and commits. The effects become visible to other,
concurrent applications but are still subject to two-phase commit termination of the TCC™ services. In order
to be able to correlate the database updates with the activity, service 1 is likely to use the work identifier id as a
(primary) key for its database updates.

3. As part of its try-phase, service 1 then chooses to call service 2. The activity is propagated by the handlers. If
done asynchronously, then service 1 may choose to use the work identifier id as a correlation identifier for the
communication.

4. The handlers at service 2 import the activity, and the call is forwarded to the application (this is how handlers
work; the application doesn't have to worry about this). The application at service 2 wants to do work that is
subject to TCC™ termination, so it first registers with the (local) transaction service. The application receives
an identifier id2 to refer to the (local part of the) work.

5. Service 2 can now update its local database to reflect the tentative state of its work. It is likely that id2 be used
as a database identifier to correlate with later cancelation or confirmation. The database updates are committed
immediately, in a local database transaction.

6. Service 2 is satisfied with its work and signals to the transaction service that it is ready to confirm when asked
to. This is done by calling completed with the local work identifier id2.

7. The result is returned to service 1 (if asynchronous, then the correlation identifier id of service 1 can be used).

8. Service 1 is now also satisfied with its work, and terminates its tentative phase by calling completed with
its own work identifier id. Since service 1 is executing as the root activity, this will trigger completion by the
transaction service (shown in the next examples).

Writing Transactional Services
with ExtremeTransactions™

17

Example 2.4. Distributed TCC™ Prepare

After the root activity is completed in the previous example, the transaction service will ensure consistent
termination with cancel/confirm at all participant services. TCC™ activities can be distributed across nodes and
can take a long time to complete. Consequently, parts of the work can time out while waiting for confirmation. To
minimize problems with timeouts, the transaction service will do a prepare-phase (as in two-phase commit) behind
the scenes. This is a purely technical step without application-level requirements.

Figure 2.8. Distributed TCC™ prepare phase

Writing Transactional Services
with ExtremeTransactions™

18

Example 2.5. Distributed TCC™ Confirmation

Assuming that the prepare phase succeeded (no timeouts) then confirmation will happen as shown next. The system
uses the registration identifiers of the work to call the application-level confirm implementations. Each service
can use its respective identifier to confirm its changes in the database. This happens in a separate, local database
transaction committed immediately.

Figure 2.9. Distributed TCC™ confirmation phase

Note the local nature of confirmation: because the transaction service calls the remote parties, each
TCCService implementation only has to confirm its own work locally. Also note that the local identifier is
used to confirm the work at each site.

Writing Transactional Services
with ExtremeTransactions™

19

Example 2.6. Distributed TCC™ Cancelation

In case of one or more timeouts during prepare, cancelation will be done everywhere. This is similar to confirmation
except that now cancel is called at each participating service.

Figure 2.10. Distributed TCC™ cancelation phase

Writing Transactional Services
with ExtremeTransactions™

20

Example 2.7. Distributed TCC™ Failure

A failure is an error in the tentative logic (in the try-phase). A service should call failed (with its work identifier)
whenever it encounters an error from which it can't recover. This will make sure that the transaction service forbids
confirmation of (the relevant parts of) the work and calls cancel instead. This is shown next.

Figure 2.11. Distributed TCC™ failure

In this example, service 2 encounters a fatal error and calls failed to indicate that its part of the work (and any
transactional calls that service 2 may have made) should be canceled.

Note that service 1 is still allowed to try an alternative service and complete. This means that failed remote calls
don't have to lead to global failure of the entire activity.

2.3.1.4. TCC™ and Subtransactions

When register is called without an existing transaction (activity), the system wil create a root activity. On the
other hand, if an activity already exists (for instance, an imported one) then a subtransaction (or subactivity) will be
created instead.

Calling completed has a different effect for root activities versus subactivities:

• For root activities, calling completed will trigger the distributed confirmation process and lead to the
consistent invocation of either confirm or cancel for each participating service.

• For subactivities (e.g., imported activities), completed will merely mark the activity is tentative; it is up
to the root to trigger the final confirmation or cancelation.

Writing Transactional Services
with ExtremeTransactions™

21

2.3.1.5. Failures During Confirmation or Cancelation

A well-known problem with compensation-based approaches is what to do when compensation fails (the same can
be said of confirmation). As the TCC™ state diagram shows, there are two possible ways of failure:

• A TCCException is thrown. In this case the transaction service will retry the cancel (or confirm) a
number of times. If this eventually works then there is no problem. Otherwise, the transaction service will
eventually give up and make the transaction fail with a heuristic hazard error. This means that the transaction
information stays in the logs and is available for manual intervention. One of the patent-pending features of
ExtremeTransactions™ is the detailed application-level information available in this case.

• A heuristic exception is thrown. This signals that an intermediate administrative intervention has already
terminated the TCC™ process in an incompatible way. This is a fatal error condition, because at least part of
the global transaction did not terminate the way it was supposed to. This again leads to a heuristic error for the
overall transaction, and the information will be available in the logs for manual resolution.

2.3.2. Compatible Protocols
TCC™ service implementations are compatible with the following protocols:

• The Atomikos™ web service transaction protocol.

• The Atomikos™ binary RMI-IIOP protocol.

Any transaction imported via one of these protocols will automatically be available for you TCC™ service (i.e.,
confirm or cancel of your TCC™ service will be linked with the two-phase commit of the overall transaction).

22

Chapter 3. Configuring
ExtremeTransactions™ Behaviour
The configuration of ExtremeTransactions™ is very similar to TransactionsEssentials™, with some extra
parameters and values to set. This chapter discusses each parameter in turn. These parameters relate to the
transactions.properties file in your classpath.

3.1. Enabling ExtremeTransactions™
The parameter com.atomikos.icatch.service must be set to
com.atomikos.icatch.trmi.UserTransactionServiceFactory in order to make sure that
ExtremeTransactions™ is enabled.

3.2. RMI-JRMP Configuration
If you plan to use RMI-JRMP as the protocol for calling your services, then you should set the following parameters.

• com.atomikos.icatch.rmi_export_class: set this to value UnicastRemoteObject.

• java.naming.factory.initial: set this to the JNDI initial context factory of your
JNDI service. ExtremeTransactions™ needs a JNDI registry to store references to remote
transaction objects it creates and exposes during its operation. The recommended value is
com.sun.jndi.rmi.registry.RegistryContextFactory (the JNDI included in the Java
installation).

• java.naming.provider.url: set this to the corresponding JNDI provider address. If you set the
recommended factory above, then the URL will most likely be rmi://localhost:1099 - although the port
1099 may be different for your system (depending on your configuration).

The RMI registry needs to be started separately, before you launch your service. Otherwise, startup will
fail. To start it, just type rmiregistry in a command shell.

3.3. RMI-IIOP Configuration
If you plan to use RMI-IIOP as the protocol for calling your services, then you should set the following parameters.

• com.atomikos.icatch.rmi_export_class: set this to value PortableRemoteObject.

• java.naming.factory.initial: set this to the JNDI initial context factory of your
JNDI service. ExtremeTransactions™ needs a JNDI registry to store references to remote
transaction objects it creates and exposes during its operation. For IIOP, the recommended value is
com.sun.jndi.cosnaming.CNCtxFactory (the CORBA JNDI included in the Java installation).

• java.naming.provider.url: set this to the corresponding JNDI provider address. If you set the
recommended factory for IIOP above, then the URL will most likely be iiop://localhost:1050 -
although the port 1050 may be different for your system (depending on your configuration).

Configuring
ExtremeTransactions™ Behaviour

23

The CORBA naming service (used as JNDI registry in this case) needs to be started separately, before you
launch your service. Otherwise, startup will fail. To start it, just type tnameserv -ORBInitialPort
1050 in a command shell.

3.4. Disabling RMI
If you don't need RMI services (because, for instance, you want to use SOAP) then you can avoid the overhead of
having to start the registries by setting com.atomikos.icatch.rmi_export_class to none.

3.5. Setting Client Trust Preferences
If you trust client services to control the administrative aspect of your transactions then set
com.atomikos.icatch.trust_client_tm to true. This will simplify administration of problematic in-
flight transactions at the expense of giving up some control to the client (transaction) service.

Another aspect of client trust is whether you want remote (non-service) clients to be able to start and commit
transactions. This can be indicated by setting com.atomikos.icatch.client_demarcation to true.

3.6. Enabling Web Service Transactions
Web service transactions can be enabled by doing the following:

• Set the initialization parameter com.atomikos.icatch.soap_commit_protocols to atomikos.
This will trigger startup and export of the SOAP two-phase commit endpoints in your web service VM.

• Set the initialization paramater com.atomikos.icatch.soap_host_address to the DNS hostname of
the machine where your web service is running. This setting is optional in case the default IP address guessed by
ExtremeTransactions™ does not work.

• Set the initialization parameter com.atomikos.icatch.soap_port to the port number where
you want two-phase commit to take place. This is optional and only needed if the default guessed by
ExtremeTransactions™ does not work.

• On the server (receiving) side: add an instance of
com.atomikos.icatch.jaxws.atomikos.ImportingTransactionHandler to the handler
chain of the web service.

• On the client side, add an instance of
com.atomikos.icatch.jaxws.atomikos.ExportingTransactionHandler to the endpoint of
the service you are going to call.

Web service transactions are supported according to the Atomikos (native) protocol for two-phase commit across
web services (http://www.atomikos.com/schemas/2005/10/transactions/atomikos.wsdl). Transactions can span
multiple web service invocations provided that all nodes are configured as outlined here.

Example 3.1. Configuring the ImportingTransactionHandler on the receiving side

Adding a handler to the server (receiver) side is done like this in JAX-WS:

Configuring
ExtremeTransactions™ Behaviour

24

package com.atomikos.demo.jaxws.server;

import java.util.List;

import javax.xml.ws.Endpoint;
import javax.xml.ws.handler.Handler;

import com.atomikos.demo.jaxws.impl.WebShop;
import com.atomikos.icatch.jta.UserTransactionManager;
import com.atomikos.icatch.jaxws.atomikos.ImportingTransactionHandler;

public class Server {

 public static void main(String[] args) throws Exception {
 UserTransactionManager utm = new UserTransactionManager();
 utm.init();

 Endpoint endpoint = Endpoint.create(new WebShop());
 List<Handler> chain = endpoint.getBinding().getHandlerChain();

 //incoming requests are intercepted by an
 //Atomikos handler to deal with transaction aspects
 ImportingTransactionHandler handler = new ImportingTransactionHandler();
 //depending on the importPreference,
 //a new tx may be created for the incoming call
 //just like in regular JEE
 handler.setImportPreference("Required");
 //new transactions time out when? (milliseconds)
 handler.setNewTransactionTimeout (10000);
 //should newly created transactions be JTA-like or TCC-like?
 handler.setJtaCompatible(true);
 //when a heuristic timeout happens, commit or rollback?
 handler.setCommitOnHeuristicTimeout(true);

 chain.add(handler);

 endpoint.getBinding().setHandlerChain(chain);
 endpoint.publish("http://0.0.0.0:8888/shop");

 System.out.println("server started");

 while (true) {
 Thread.sleep(1000);
 if (1 == 2)
 break;
 }

 utm.close();
 }

}

Configuring
ExtremeTransactions™ Behaviour

25

This handler class takes care of extracting any transaction context present in the incoming calls, and registers for
the final (global) transaction outcome as controlled by the client. For the complete code, please see the JAX-WS
example included in the download.

Example 3.2. Configuring the ExportingTransactionHandler on the client side

Adding a handler to the client (sender) side is done like this in JAX-WS:

import java.util.List;
import javax.xml.ws.Binding;
import javax.xml.ws.BindingProvider;
import javax.xml.ws.handler.Handler;

import com.atomikos.demo.jaxws.impl.WebShop;
import com.atomikos.demo.jaxws.impl.WebShopService;
import com.atomikos.icatch.jaxws.atomikos.ExportingTransactionHandler;

public class Client {

 public static void main (String[] args) throws Exception {

 WebShop shop = new WebShopService().getWebShopPort();
 Binding binding = ((BindingProvider)shop).getBinding();
 List<Handler> handlerList = binding.getHandlerChain();
 handlerList.add (new ExportingTransactionHandler());
 binding.setHandlerChain (handlerList);

 // now, any calls made to the shop will be done in
 // the existing transaction context, if any...

 }

}

For the complete code, please see the JAX-WS example included in the download.

26

Chapter 4. Mistaken Alternatives for
ExtremeTransactions™
You may wonder if there is really a need for ExtremeTransactions™ in your case. It really depends on what you
want, but if you have a service whose effects may time out or need to be canceled on request then you really need
this technology. This chapter discusses some perceived alternatives and shows why they are insufficient.

4.1. Exposing Cancel Operations as a Business
Service
A technique that is often suggested is exposing the cancel (or confirm) operations as separate business services, to
be invoked by a client who wants to cancel (confirm) a previous service invocation. This technique is inappropriate
for the following reasons:

• It requires the client to explicitly construct the right cancelation call. This may be simple for trivial cases, but if
you have complex workflows then this quickly becomes error-prone and it doesn't scale. Our approach allows
clients to concentrate on the positive logic; all the rest is transparently offered by the transaction service. This
reduces client complexity by at least 66 percent, without even counting all the 'transaction management' code
that you don't have to write and maintain yourself.

• It implies that the client must persistently track each service's state: the client must be able to cancel pending
services even after restarts or crashes. Otherwise, the number of 'pending' services will soon rise exponentially,
and so will all related costs. In our approach, all of this is handled by the transaction service.

• It implies that you trust the client(s) to keep your own business logic consistent. This is inappropriate in a
loosely-coupled and federated services world.

• Time-out is difficult to handle, because you don't have the necessary context (and even if you do then it is hard
to deal with interleaving of timeout and incoming confirmations, leading to many anomalous transactions with a
high administration cost).

• Issueing and receiving cancel notifications at the application-level may be problematic: for some communication
means (such as JMS™), the order of messages is not guaranteed. This means that in the do-it-yourself approach
cancel messages may arrive before the request they are meant to cancel. This means that cancel events are
effectively lost. ExtremeTransactions™ avoid this problem.

The only case where this technique really works is when you don't care about time-out and consistency. This
applies only to businesses where cancelation is 'just another business transaction' (like buying and later selling
stock). For businesses based on the 'reservation' concept, this technique is entirely inadequate.

4.2. Using Reliable Messaging
Reliable messaging by itself is a great technology, but not adequate for reservation-based business models. The
notion of cancelation is not really compatible with the usual 'fire-and-forget' mechanism offered by these messaging
platforms. Moreover, reliable messaging doesn't solve the problem of timed-out (tentative, unconfirmed) business
transactions. We see reliable messaging as complementary to ExtremeTransactions™ technology.

27

Appendix A. Glossary
• ACID: Atomic, Consistent, Isolated and Durable - the classical properties that are enforced on transactions.

• CORBA: Common Object Request Broker Architecture - a standard architecture for building distributed systems.
Outdated with the advent of Java, SOA and web services (SOAP).

• GRID: an architecture for massive scaling, where multiple equivalent instances of a service or application are
deployed on a number of independent hardware servers.

• IIOP: Internet Inter-Orb Protocol - the communication protocol for RPC in CORBA. Also used in JEE.

• JAX-RPC: an outdated API for developing web services in Java.

• JAX-WS: the current API for developing web services in Java.

• JDBC: Java Database Connectivity - the standardized API for accessing relational databases from within Java
programs.

• JDK: Java Development Kit - the set of development tools required to build Java applications.

• J(2)EE: Java, Enterprise Edition - the Java libraries and extensions (to the JDK) required to support enterprise
applications.

• JMS: Java Message Service - the standardized API for accessing messaging back-ends from within Java
programs.

• JTA: Java Transaction API - the standardized API for demarcating ACID transactions from within Java
programs.

• JRMP: Java Remote Method Protocol - the original protocol used for RMI in Java (later on, IIOP was added as
well).

• RMI: Remote Method Invocation - a soft of "RPC for distributed objects", one of the core technologies in
J(2)EE.

• RPC: Remote Procedure Call - a way of calling other processes transparently (by hiding the network from the
caller).

• SOA: Service-Oriented Architecture - a way of developing software as a set of reusable services (available on the
network).

• SOAP: Simple Object Access Protocol - a standardized way of encoding RPC-like calls as XML (used for web
services).

• TCC: Try-Cancel/Confirm - a new way of providing transactional services, provided by Atomikos.

• VM: Virtual Machine - the runtime environment of a Java application.

• web services: services accessible on the network via SOAP.

• XA: Extended Architecture - a standardized API for co-ordinating ACID transactions across backend systems.

• XTP: Extreme Transaction Processing - an architecture for processing high volumes of mission-critical
transactions on commodity infrastructure. As explained by numerous Gartner™ reports, J(2)EE application
servers are not suited for this; something new is needed like ExtremeTransactions™.

28

Appendix B. More Information
• TCC: Try-Confirm/Cancel Transactions for Web Services

Available online at http://www.atomikos.org/forums/viewtopic.php?t=97

• The WS-Transaction Standardization Committee

See http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-tx (information about WS-
Coordination, WS-AtomicTransaction and WS-BusinessActivity)

• JAX-RPC: http://java.sun.com/webservices/jaxrpc

• JAX-WS: https://jax-ws.dev.java.net

• JTA: The Java Transaction API specifies the interfaces towards a transaction manager from within a Java
program. More information on http://java.sun.com/products/jta

• XA Specification: Published by the Open Group (http://www.opengroup.org), available online via the website.

