Atomikos
TransactionsEssentials™ Guide

Atomikos TransactionsEssentials Guide
Copyright © 2008 Atomikos

Table of Contents

O [gL oo (8 1o o R P T PP PP PPPPPTI 1
1.1. Who Should Read ThiS GUITEcoouuiiiiiii et e e e 1
1= - o PP PUPPPTR 1
1.3, SyStEM REQUITEITIENESceetiieiieii ettt ettt e et et et et et e et et e e et et e e et et e e e e nban s 1

2. JTA OVEIVIBIW ..ttt e ettt oottt oo ettt e et et b e et et bt e et e e e et e e n e et e e n e et et e e e enans 2
P T I == o1 o TSP P TP UPPPTRR 2

2.1.1. NeStEd TIaNSACHIONSeiiitiieeeiii ettt et e e et e e ettt e e et et e e ettt e e e et neeeesbreeeenbnaeeees 2
2.2 VW 1S JT A 2 et ettt et s 3
2.3, TWO-Phase COMIMITceeeeieiiit ettt e et e e ettt e e e ab e e e na s 3
2.3.1. JTA COMPONENES ...titetieetiie ettt e ettt e e et e e et et e e e e e e et e e e aereeaa s e eat e e eneennaaaes 4

3. Configuring Atomikos TransaCtioNSESSENTIAISiiieiriieeiiii et 13
3.1 The ConfigUuIation File ittt et e et e e eeae e eees 13
3.2. Default Values YOU Should OVEITIAEooeuuieiiii et 15
3.3. Ant-Style References in the PropertieS File e 15
3 @1 === [L PR 15

3t I O 17 o o T PP 15
R @ 1 - [o o PP 16
G T @ 17 1o I PP 16

4. Programming Transactional APPlICALIONScieuuieiiii et e e s 17

4.1. Regular Applications: Atomikos JDBC/IMS and the UserTransactionc...oveveeviiieieeiinneeennnnn. 17
4.1.1. Getting the USErTranSaClionuuoiiiiuieieiiiie ettt et e e e e e e e ennanns 17
4.1.2. IDBC: Using an AtOMIKOS DBLASOUICEcccuuunieiiiiieeeeii et e e e 18
4.1.3. IDBC: Using an Atomikos NON-XA DalaSOUICEccuuuuiieiiiiiiieeiiiieeeeeie et e e 19
4.1.4. IMS: Using an Atomikos JMS ConNECtiONFECIONYcccuvuieiiiiiiieiiiiie e 20
4.1.5. IMS: Message-Driven FUNCHONAITTYuuiiiiiiiiiii e 21
4.1.6. IMS: Managed SenOer SESSIONSueiiereieeiiti e ettt e e e et e e e 21

4.2. For XA-Level Integration: The JTA TransaCtioNManagercccuuueeieriieeieiiiaeeeeie e e eeiiee 21
4.2.1. Getting the TransaCtioNMaNAgEYc.uunieiiiiiiee ettt e e 21
4.2.2. Typical Code Pattern for JTAIXA ..ot 22

4.3. For Sophisticated Needs: The Atomikos UserTranSaCtionSEIVICeuuvvvvveneeieiiieeeeiie e 23
4.3.1. Getting a UserTransactionService INSTANCEuuiiiiiiiieieiii e 24
4.3.2. Overriding StatiC PrOPEITIESc.vuueeiettiee ettt e e ettt e et e e et e e e et e e e ere e eeen 24
4.3.3. Explicit Resource Registration and RECOVENYuiiiiiiiiiieiiiiiieiei e 24
4.3.4. Registering @ LOGAAMINISIIAIONcveeeeeieii ettt e 25
4.3.5. Explicit Startup and SNULAOWNooiiiiiieiii e 26
4.3.6. Getting the USerTranSaClioneiieuuieiiiii et e e 26
4.3.7. Getting the TransaCtioNMaNAgEYc.vuniiiiiie ettt 27
G R T @ 0= (o] P PTRRTN 27

Al ANSIVEIS ettt et et 29
ALL CREPLEN 20 ANSIWELS ...ttt e e ettt e ettt e et ettt et e ettt bt e et e te e e et e bt e e e e ebb e e eeaaneeenn 29

N 0 T @ 1 11 o I PP 29
N I @ 1N 1 1 o o PRSP 29
N R T @ 1H 1 1 o e PP 29
N I @ TH 11 o 1 PP 29
ALLS, QUESIION 5 ottt e e e et eeanaee 29

A2, CREPLEN 31 ANSIWELS ..o eieiit ettt ettt e ettt e ettt e et ettt e et ettt e et e tb e e e ettt e e et eba e e eera e eene 30
N T @ 1 11 o o I PP 30
AL2.2. QUESHION 2 ..ttt et e a et et e eanaaae 30
y N T O 81 o B PP 30

A3, CNEPLEN 41 ANSIWELS ...ttt e ettt e et ettt e ettt e e et e th e et et e et e bt e e eera e eeen 30
N 0 I @ 1 11 o o I PP 30

Atomikos
TransactionsEssentials™ Guide

YN I @ 11 1 o o PRSPPI 31

B. Getting More out of Atomikos TranSaCtiONSESSENTIAlSuvvviiiii e e e e e e e e e 32
B.1. The HeUristiCMESSAgE INTEITACEiii i e e e e ea e 32

B.2. JDBC: The HeuristicDataSource INterfaceoouuuuiieiiiiiiicieis e 33

B.3. IMS: The HeuristicQueueSender INtErfacec.uviiiiiiiii e 34

B.4. IMS: The HeuristicQUEUERECEIVEN INtEITACEoivvii it 34

C. Using Atomikos TransactionsEssentials in (Web) AppliCation SErVErSc.cciviiiiiiiiiiiciie e 36
[TR I (0 1H o1 === oo o] 1] o [37
o (= 1= 0T S TP PPT PPN 38

List of Examples

2.1, A typiCal tranNSACHION USE CBSE ...cevuuiiiitti i eeieii ettt e ettt et et ettt et e et r et e eb e r et e et e et e et e e e e nba e e e ennans 2
3.1. Sample configuration file for the transaCtion SEIVICEviiiiiiii e 13
4.1, Getting the USEITIaNSACIONuuieiiiii et ettt et e ettt e et e et e et e e et et e e e et e e e eetaaeeeenes 18
4.2. Configuring an AtOMIKOS DAIBSOUICEccuuuuieiiiti ettt ettt e et ettt e e e et e e e e et e eeenba e aeens 18
4.3. USINg an ALOMIKOS TBEASOUICEuueieiiie ettt et ettt e e et e et e e et e eeera s 19
4.4. Using an AtOmiKOS NON-XA DEIASOUICEuueeeeitneeiiii ettt e ettt e e eeat e e e et e e eeat e e eert e eeentnaaeeee 19
4.5. Using an AtomikosConnectionFaCtOryBeaniviiiiiiiiiiii e 20
4.6. Typical PatterN Of JTA//XA USAEciieti ettt ettt e ettt e et e e ettt e e e eeb e e e eata e eeaetanaeeees 22
4.7. Constructing the UserTransactionService ODJECEuiiiiiiiiiiii e 24
4.8. Creating @ TSINITINFO OBJECT ...ttt e s 24
4.9. Explicitly registering a (JDBC) reSOUICE fOI FECOVEIY.iiuuuueiiiii it ettt e et e e e e 25
4.10. Explicit Startup and SHULJOWNoouenieii ettt ettt e et e e e e e er e e enaas 26
4.11. Getting the UserTransaction via the UserTransaCtioNSEIVICEvvvuueiiiiii e 27
4.12. Getting the TransactionManager viathe UserTransaCtionSErVICecoeuuuueiiiiiiieieeii e 27

Chapter 1. Introduction
1.1. Who Should Read This Guide

Y ou should read this guide if you fall into one of the following categories:
* You want to use Atomikos TransactionsEssentials.
* You want to add transaction support to your J2SE application.

* Youwant to understand a bit more about JTA.

1.2. Preface

This user guide explains how to use Sun's Java Transaction APl (JTA)™ version 1.0.1 and the Atomikos
TransactionsEssentials™ embedded transaction manager. It is not meant as a general discussion of JTA. However,
an overview of JTA isincluded, and wherever appropriate there are questions at the end of each chapter that allow
you to test your understanding. Y ou are encouraged to actively try to answer these questions, since they will

allow you to get more out if this manual. For more information on JTA, you are referred to the Sun site (http:/
java.sun.com), where detailed JTA specifications can be downloaded for free. Although examples based on JIDBC™
and IMS™ are used to illustrate the concepts, we consider those two technologies to fall outside the scope of this
manual. Again, the Sun website has more information for the interested reader. If you don't like to read manuals,
then you can take a shortcut and go to the examples included in the installation folder. These illustrate the concepts
that are explained in the text with source code of example programs.

1.3. System Requirements

This guide has been written for Atomikos TransactionsEssentials release 3.0 or higher. In order to use the Atomikos
system we recommend that you install and run aJavaVM of at least version 1.4. Memory requirements are likely to
depend more on your code than on our software because of the compact nature of the kernel; most modern systems
should have more than enough memory. The libraries that come with Transactions include most of what you need in
order to compile transactional applications: the API definitions for javax.transaction.*, javax.sgl.* and javax.jms.*
areincluded so that you do not need to get those separately.

NOT included in this release are vendor-specific JDBC or IM S implementation libraries. For instance, if
you want to use our transaction service to manage transactions that access your Oracle™ database, then
you need to make sure that you have the Oracle JDBC classesinstalled in your classpath, in addition to the
Transactions distribution classes. Likewise, if you want to use IBM MQSeries™ for JM S then you need to
make sure that the MQSeries libraries are in your classpath.

Chapter 2. JTA Overview

Unless explicitly mentioned, the discussion in this chapter is limited to pure JTA: the content of this
chapter should apply for ANY JTA implementation, not just Atomikos. Atomikos-specific information is
provided in the later chapters of this manual.

This chapter isageneric JTA overview: it quickly reviews the most important things about JTA that you need to
know in order to use Transactions™. The organization is as follows:

» Transactions
 WhatisJTA?

* Two-Phase Commit
e JTA Components

» JTA Interactions

* Questions

2.1. Transactions

A transaction isalogica unit of work which effects can either be made permanent in their entirety (committed)
or cancelled in their entirety (rolled back). Before a transaction is committed or rolled back, it is active. Active
transactions' effects are typically invisible to other, concurrent transactions. Conseguently, only committed
transactions' effects are visible (can you see why?).

Example 2.1. A typical transaction use case

Imagine that you want to publish a customer-related order message through the Java Message Service (JMS) and at
the same time mark the customer's order data in the database as being processed. The message should not be sent
unless the database can be updated and vice versa.

The concept of transactions requires system-level software support to make these properties hold. A piece of
software that takes care of thisis called a transaction manager or transaction service.

2.1.1. Nested Transactions

The nested transaction model is avariant of the normal (‘flat’) transactional model. Nested transactions differ in
that a subtransaction can be created within an existing transaction (which becomes the parent transaction). The
subtransaction is again a transaction that can be committed or rolled back. The major differences with normal
transactions arein visibility and termination:

» Vigibility: an active (sub)transaction's effects are visible to its subtransactions (if any). This meansthat thereis
sharing of updates from parent transaction to subtransaction.

e Termination: arolled-back subtransaction does not affect its parent transaction. On the other hand, a committed
subtransaction's effects become part of the parent transaction, and become permanent only after the top-level
transaction (the one without a parent) commits.

JTA Overview

2.2. What is JTA?

JTA isshort for Sun Microsystems' Java Transaction API and is Sun's (low-level) API for creating transactions in
Java and making your data access operations part of those transactions.

The JTA defines how your application can request transactional functionality on the Java platform. JTA is not
aproduct initself, but rather a set of Javainterfaces. A vendor-specific JTA implementation referred to asa
transaction manager or transaction service (such as Transactions™) is needed to actually use the functionality
defined in these interfaces. In other words, you can program JTA transactions in your application, but you need the
implementation classes of a JTA-compliant transaction manager vendor in order to run your application.

JTA isastandard part of the Java Enterprise (J2EE) platform and every Enterprise JavaBeans (EJB) application
server should also include a JTA implementation. The JTA is said to be low-level because EJB programmers
typically don't access the JTA API directly or explicitly. Rather, the EJB application server makes the appropriate
calls behind the scenes.

So given that an EJB server will also give you JTA functionality, why should you consider using Atomikos
TransactionsEssentials? Here are just afew reasons:

» Not al EJB serverswill provide afully functional JTA (even if they claim so). For instance, most -if not all-
open source EJB servers don't even come close to what a transaction manager needsto do, and fail when they
are needed most: after restart or a server crash.

e EJB serversthat do provide a reasonable transaction manager are often very expensive, and an overkill for many
solutions that only need a fraction of the J2EE APIs. Atomikos TransactionsEssentials provides transactions at a
fraction of the cost of afull EJB server.

e Atomikos TransactionsEssentials offers more features than defined in the JTA specification.
» Atomikos TransactionsEssentials has better and more functionality than most competitors offer.

» Atomikos TransactionsEssentials was designed for very high performance (there is no extra overhead for JTA
transactions; local transactions and JTA transactions can be expected to be equally fast).

» With Atomikos TransactionsEssentials you can even bring JTA functionality on the J2SE (Java 2 Standard
Edition) platform.

2.3. Two-Phase Commit

In the previous section we have referred to a JTA implementation as a transaction manager or transaction service. A
transaction isalogical unit of work that either happens completely (in all databases or queues that were accessed by
it) or not at all. The transaction manager is the software module that is responsible for ensuring this property. It does
this by executing a two-phase commit termination protocol that addresses all of the resources that a transaction has
used. This two-phase commit happens behind the scenes of your application: you typically don't notice it.

Let us briefly describe two-phase commit with the previous example still in mind. Two-phase commit works in two
phases: avoting phase and a decision phase.

* Inthevoting (or prepare) phase, the transaction manager will ask both the IM S message queue and the database
whether they can agree with a successful termination or not. Each may return a negative reply, for instance if
there was a time-out which caused the database's work to be rolled back. If one of them replies positively, then
it should make sure it can always make the work permanent (thisimpliesthat it can no longer cancel dueto an
internal time-out).

» After the transaction manager has received all of the replies (also called 'votes) it will make a global decision on
the outcome of the transaction. This decision will depend on the collected replies:

JTA Overview

« |If both replies were positive (meaning that both the IMS and the database can make the work permanent),
then the transaction manager will instruct each to commit.

o If at least onereply is negative (or missing) then arollback decision is sent to the remaining resource. This
means that the remaining resource cancels (rolls back) the work done for the transaction.

There are two thingsto notice:

» Each resource must have the capability to understand two-phase commit: it needs to reply to a prepare request
from the transaction manager, and be able to rollback (cancel) the work if the transaction manager decides so.

» If aresource votes positively during prepare and is then cut off from the transaction manager (for instance, if the
transaction manager crashes) then it does not know what to do. It can not cancel on its own due to the two-phase
commit protocol rules, so it needs to remember the transaction indefinitely. In addition, this restricts concurrent
access by other transactions. In that case, the resource is said to be in-doubt.

This explains why JTA can not be used to make anything transactional: you can only have transactional properties
for applications that access the proper type of resources (those resources that understand two-phase commit).

The fact that a resource can remain in-doubt and restrict concurrent access is something that has bothered many
vendors. To alleviate thisrestriction, a practical variant of the two-phase commit protocol includes so-called
heuristic decisions: aresource that remains in-doubt for too long may decide to unilaterally rollback (or commit)
the transaction, leading to possible violation of the all-or-nothing property. We will see more on thislater in this
chapter.

2.3.1. JTA Components

Here we will review the main components (interfaces) of the JTA specification and briefly discuss their roles. We
will not repeat the definitions for these interfaces; those can be found in the JTA specifications on Sun's site. The
packages relevant to this chapter are javax.transaction and javax.transaction.xa.

» TransactionManager
» Transaction

o Xid

* XAResource

e Synchronization

» UserTransaction

e Exceptions
2.3.1.1. TransactionManager

The transaction manager is where you can create new transactions and set properties (such as the timeout value) for
future transactions. It also allows your application to retrieve the current transaction, after you have created one. An
interesting point isthat thisis thread-safe: if you have multiple threads running concurrently, then each thread can
create its own transaction and will be able to retrieve only that transaction which it created. The transaction manager
will behave as a'private’ manager for each thread of your application.

The following methods are provided:

» begin: this method creates a transaction for the application. When it returns, you will be able to retrieve the
transaction object through getTransaction within the current thread. Atomikos' TransactionsEssential s supports

JTA Overview

nested transactions, meaning that a transaction can be created within another one. This means that for Atomikos
TransactionsEssentials, calling this method twice in the same thread (without commit/rollback in between)

will create a nested transaction, whose final commit will coincide with the commit of the first transaction you
created.

commit: this method will try to commit the last transaction that was created for the current thread. Afterwards,
the transaction can no longer be retrieved by getTransaction. For AtomikosJTA, if the last transaction was a
subtransaction then thiswill trigger the commit of the subtransaction. According to the semantics of nested
transactions, the subtransaction's updates will not be visible or permanent before the top-level transaction to
which it belongs is committed. The commit of a subtransaction will restore the thread association for its parent
transaction. This means that calling getTransaction will again return the parent transaction.

rollback: this method will trigger rollback of the last transaction that was created for the current thread. For
AtomikosJTA, nested semantics apply: if the current transaction is a subtransaction, then the rollback will

not affect the parent transaction: work done within the parent is not automatically lost by rolling back the
subtransaction. As with commit, this method changes the transaction-association for the thread. For atop-level
transaction, this leaves the current thread without a transaction. For a subtransaction, this method restores the
thread association for the parent transaction.

getTransaction: this method returns the transaction object for the calling thread, or null if there is no active
transaction. The transaction object is needed in order to add work to it: all the work that needs to be part of this
transaction must be explicitly added to it (more on that below).

setTransactionTimeout: thisisto set the timeout of future transactions. A timeout indicates the time atransaction
is alowed to be active beforeit is automatically rolled back by the transaction manager.

getSatus: allows you to retrieve the status of the current transaction.
setRollbackOnly: see Transaction.

suspend: this method is useful if an active transaction exists, but you need to start a new transaction that is
independent. By suspending the current transaction, you dissociate it from the current thread and are free to
begin a new one, whose commit or rollback will not affect the current transaction. If you want to have another
thread continue the current transaction then this method can be used (in combination with resume) to 'pass on'
the transaction to another thread.

resume: this method (re-)associates the calling thread with an existing transaction (typically one that was
suspended first). If you continue a transaction in a different thread, then that thread should call this method with
the transaction as an argument. If you have done some intermediate work in a different transaction, then this
method can be called to resume the original transaction.

Note: set Tr ansact i onTi meout will ignore values that exceed the maximum specified by
configuration parameter com at oni kos. i cat ch. max_t i meout (seethe configuration chapter later
in this guide).

2.3.1.2. Transaction

The transaction interface allows manipulation of an active transaction. The most important role of thisinterfaceis
to add work to the scope of the transaction, thereby making the outcome of the work depend on the outcome of the
transaction. The functionality of the transaction interface is discussed below.

enlistResource: this method adds work to the transaction. The required argument is of type X AResource, which
is an interface for resources that understand two-phase commit. By enlisting an X AResource, the work that
it represents will undergo the same outcome as the transaction. If different resources are enlisted, then their

JTA Overview

outcome will be consistent with the transaction's outcome, meaning that either all will commit or al with
rollback.

» delistResource: this method indicates that the application stops using the X AResource for this transaction. The
XAResourceis essentially a connection to the underlying data source, and this method notifies the transaction
manager that the connection becomes available for two-phase commit processing. There are two special cases: if
aflag value of TMSUSPEND is given as a parameter, then the method call merely indicates that the application
istemporarily done and intends to come back to this work. This merely serves for internal optimizationsinside
the data source. Y ou should call this method if the transaction is being suspended. Coming back to such a
suspended work's context is done by calling enlistResource again, with the same X AResource. The second
special caseiswhen TMFAIL is supplied as argument. This can be done to indicate that a failure has happened
and that the application is uncertain about the work that was done. In this case, commit should not be allowed,
because there is uncertainty about the contents of the transaction. For instance, if a SQL Exception occurs during
a SQL update, then the application can not know if the update was done or not. In that case, it should delist the
resource with the TMFAIL flag, because committing the transaction would lead to unknown effects on the data;
this could lead to corrupt data.

» getSatus: this method returns the status of the transaction.

e commit: same as TransactionManager.commit(). This method should not be called randomly: first, every
XAResource that was enlisted should also be properly delisted. Otherwise, XA-level protocol errors can occur.

* rollback: same as TransactionManager.rollback(). As with commit, this method should not be called randomly:
first, every resource that was enlisted should also be delisted. Otherwise, XA-level protocol errors can occur.

» setRollbackOnly: mark the transaction so that it can not commit. This method is provided to alow application
code to prevent the transaction from committing, without the requirement to call rollback directly. There are
good reasons for this: the rollback should happen after proper delisting of al resources and therefore is not
something that happens randomly. This method, however, can be called at any time when the transaction is
active.

» registerSynchronization: this method adds a callback for third-party notifications about two-phase commit
outcome. Thisis useful if you are caching updates until the end of the transaction, and need a natification about
when that end is going to be.

2.3.1.3. Xid

Thisinterface isimportant for the communication between the transaction manager and the system behind the
XAResource. The XAResource is essentially a connection to that system, and many different transactions can use
the same connection. Therefore each time the transaction manager wants to begin or end a transaction, it needs to
use an identifier that the system behind understands and that identifies the work of the transaction in question. To
this end, one JTA transaction can have one or even multiple Xid instances associated to it. It is not necessary to
completely understand this mechanism in order to use Atomikos TransactionsEssentials, so it will not be discussed
in more detail here.

2.3.1.4. XAResource

The XAResource is the transaction manager's connection to the data source. For each application-level connection,
an XAResource is needed to make the application's work through that connection part of a JTA transaction. The
details of the X AResource are not important for TransactionJTA, so we will not discuss them any further.

2.3.1.5. Synchronization

Thisinterface is ameansto register an application-level callback; it allows the application to be notified upon two-
phase commit events. Y ou can use this functionality by implementing thisinterface in your application.

JTA Overview

Note: synchronizations are not persistent; after a crash, any recovered transactions' synchronizations will be
lost.

» beforeCompletion: this method is called before the transaction will start its commit. A typical usage of this
method is to write pending updates to the database.

» afterCompletion: this method is called after commit or rollback completes, and indicates whether it was
successful or not.

2.3.1.6. UserTransaction

Thisinterfaceis asimple and restricted version of the JTA functionality. It is the typical application-level
transaction service handlein EJB. Y ou can use this interface to expose only a subset of JTA functionality to the
application code.

Note: set Tr ansact i onTi meout will ignore values that exceed the maximum specified by
configuration parameter com at om kos. i cat ch. max_t i meout (seethe configuration chapter later
in this guide).

2.3.1.7. Exceptions

There are some specific exceptionsin JTA that are worth mentioning: those that concern the heuristic terminations.
Since they are not really made clear in the JTA specification, we will mention something about them here.
Whenever a heuristic error happens the transaction manager should keep alog entry for the transaction involved,
so that a human administrator can resolve any conflicts. Part of Atomikos patent applications concern precisely the
kind of information that is available in the logs in these cases.

» HeuristicCommitException: if all resources have been in-doubt for too long, they may have committed the
transaction athough al replied positively during the prepare of two-phase commit. If the transaction manager
later re-establishes contact and instructs the resources to rollback then this exception will be thrown to the
application. It indicates an anomaly in the transaction's outcome, where all resour ces involved have chosen to
commit heuristically, because al were |eft in-doubt. If you get this exception, it means that the entire transaction
has been committed, although rollback was desired.

» HeuristicRollbackException: all resources have decided to rollback although the final decision of the transaction
manager was to commit. Thisis similar to the previous case; thistime it means that the entire transaction hasin
fact been rolled back whereas the desired outcome was commit.

» HeuristicMixedException: thisis the most complex error, where some of the resources may have committed
and others have rolled back. It hints that the transaction's effects are only partial; thisisaclear violation of
transactional semantics. Remember, more information should be in the logs.

2.3.1.8. JTA Interactions

This section hightlights some typical JTA interactions for JDBC data sources. For other resources such as IMS
gueues, most things are the same except for the way the XAResources are to be retrieved.

* Active Transaction

* Transaction Commit

JTA Overview

» Transaction Rollback
» Transaction Termination with Errors
2.3.1.8.1. Active Transaction

Thetypical interactions for an active JTA transaction are shown below. Note that the only thing you have to provide
isthe Application, and the Connection Manager if you don't use the Atomikaos connection pools.

Please note a very important point when using connection pools: the connection manager will only be able
to delist aresource when it isinformed about the application-level close operation on the JDBC connection.
This means that you should always properly close the connections from the pool; this should be done in the
finally-part of atry{...}finally{...} block. Opening the connection belongs in the try-part.

Application | T:::ﬁ:d:?" i XADataSource XAConnection Connection XAResource
" | Connection | Sl
Manager
begin a
" »| Transaction |
getConnection '

» getXAConnection

Y

getXAResource

Y

enlistResource

Y

start _
getConnection __ =
| addConnectionEgentlListenar
return connection -
.* ___________
fido SQL _
close |
delistResource
= end

¥

removeConnectignEventListena

Y

2.3.1.8.2. Transaction Commit

Thetypical commit scenario is shown below.

JTA Overview

TransactionManager

XAResource

Application

XAResource

XAResource

Transaction

commit

h J

commit

Y

prepare

¥

prepare

prepare

h

commit

h 4

commit

h

commit

Y

¥

2.3.1.8.3. Transaction Rollback

A possible rollback scenario is shown below: the application requests commit, but one of the X AResources has
timed out and rolled back beforeit is asked to prepare. The result is rollback, and an application-level exception

(since commit was requested).

JTA Overview

TransactionManager _
L XAResource | XAResource | XAResource
Application i
Transaction
commit -
commit _
prepare _
prepare |
prepare /fails _
rollback |
rollback |
rollpack _
Rollback o
_ Exception
RollbackException

2.3.1.8.4. Transaction Termination with Errors

A possible heuristic scenario is shown below: the application requests commit, but one of the XAResources
becomes unreachabl e after it is asked to prepare. The result is heuristic rollback, and by the time the transaction
manager re-establishes contact commit fails with a heuristic error. An application-level heuristic mixed exception is
thrown (since the other two XAResources did commit, parts have been committed and other parts have not).

10

JTA Overview

TransactionManager
- XAResource XAResource XAResource
Application
Transaction
commit -
commit _
prepare =
prepare |
prepare -
commit |
commit |
fheuristic| rollback
HeuristicMixed commit
aurnsiciixe T oo -
Exception - XA HeuristicRollback
HeuristicMixedExceptiorn -

2.3.1.9. Questions

2.3.1.9.1. Question 1

Consider the two-phase commit protocol and the example in the text: an update in a database and a message being
published in IMS, as part of one transaction. Can't you solve the problem of reaching the same outcome for both
parts by controlling the order in which you execute each one? For instance, why bother controlling the outcome of a
database update if your application knows that it succeeded already?

2.3.1.9.2. Question 2

Imagine the following scenario: an application isusing a JTA implementation to manage transactions that access
two JDBC databases, say, DBa and DBb. The application has updated both of them and isin the course of
committing the transaction. As part of that commit processing, the transaction manager has received positive replies
from both databases when it asked them to prepare and hence it decides to commit. However, it can only notify

DBa of this decision: before DBb can be told about commit, a system crash happens and causes DBb to go down.
The rest of the system is not affected because DBb is running on its own private machine. The transaction manager
repeatedly retries to connect to DBb, but after awhile it gives up and throws an exception to the application. What is
the exact type of this exception?

2.3.1.9.3. Question 3

Which of these methods can be called at any time when atransaction is active: setRollbackOnly or rollback? Why?

11

JTA Overview

2.3.1.9.4. Question 4

An application has started a transaction and isin the middle of updating a JDBC database when a SQL Exception
happens. Should the transaction be committed or rolled back?

2.3.1.9.5. Question 5

An application is listening on incoming remote method invocation (RMI) request. An incoming requests is executed
in some Java thread according to the virtual machine's internal rules. This thread could be the same one asfor a
previous request. The application-level logic for an invocation involves creating a JTA transaction and doing some
JDBC work aswell as publishing a IMS message. If you are using a JTA implementation that supports nested
transactions, why should you always make sure that the transaction is terminated (by commit or rollback) before the
invocation returns?

12

Chapter 3. Configuring Atomikos
TransactionsEssentials

Whereas the previous chapter was generic JTA information, this chapter is specific to Atomikos
TransactionsEssentials. It concerns the setup (configuration) of Atomikos TransactionsEssentialsin your
application.

Atomikos TransactionsEssentials is an embedded transaction service, meaning that it runsinside the same
VM as your application. This optimizes speed and availability of your application.

Configuration is done in the configuration file, a properties file with property=value combinations of important
transaction service settings. The settings you use determine general transaction-related information such as where
logfiles are to be kept and what default timeout values are.

3.1. The Configuration File

The configuration file contains the parameters for initialization and operation of the transaction service. If thisfile
can not be found then default values will be used. To instruct Atomikos TransactionsEssentials to use a custom
configuration file, there are several possibilities:

* Namethefile transactions.properties and put it in your classpath.

» Giveyour file any name and location you like, and specify this as a system property at startup: java -
Dcom.atomikos.icatch.file=path to your_file... Note that setting this system property overrides any
transactions.properties configuration data that you might have according to the first approach.

e Toavoid using aconfiguration file, you can also use run-time values for each of the parameter settings.
Y ou can indicate that thisis the case by supplying the following system property at startup: java -
Dcom.atomikos.icatch.no file... In that case, the properties need to be set programmatically before initialization
of the transaction service. Thisis explained in the last part of this guide.

A samplefileisincluded in the installation folder. The configuration file can contain the parameters shown
in the example below. Note that the format should be avalid Java property-file format.

Example 3.1. Sample configuration file for the transaction service

#SAVPLE PROPERTI ES FI LE FOR THE TRANSACTI ON SERVI CE
#TH' S FI LE | LLUSTRATES THE DI FFERENT SETTI NGS FOR THE TRANSACTI ON MANACGER
#UNCOMMENT THE ASSI GNVENTS TO OVERRI DE DEFAULT VALUES;

#Required: factory class nanme for the transaction service core.

#

com at om kos. i cat ch. servi ce=com at om kos. i cat ch. st andal one. User Transact i onSer vi ceFact ory
#

13

Configuring Atomikos
TransactionsEssentials

#Set the nunber of log wites between checkpoints
#
#com at om kos. i cat ch. checkpoi nt _i nt er val =500

#Set output directory where console file and other files are to be put
#make sure this directory exists!

#

#com at om kos. i catch. output _dir = ./

#Set directory of log files; nake sure this directory existsl!
#
#com at om kos. i catch. |l og_base dir = ./

#Set base nane of log file

#this nane will be wused as the first part of
#t he systemgenerated log file name
#

#com at om kos. i catch. | og_base_name = tm og

#Set the max nunber of active |ocal transactions
#or -1 for unlimted

#

#com at om kos. i catch. nax_actives = 50

#Set the max timeout (in mlliseconds) for |ocal transactions
#
#com at om kos. i catch. max_ti neout = 300000

#The gl obal Iy uni que nanme of this transaction manager process
#override this value with a globally uni que name

#

#com at om kos. i catch. t m uni que_nanme = tm

#Do we want to use parallel subtransactions? JTA' s default
#is NO for J2EE conpatibility.

#

#com at om kos. i catch.serial _jta_ transactions=true

#1f you want to do explicit resource registration then
#you need to set this value to false. See later in

#this manual for what explicit resource registration neans.
#

#com at om kos. i catch. automati c_resource_regi strati on=true

#Set this to WARN, |INFO or DEBUG to control the granularity
#of output to the console file.

#

#com at om kos. i cat ch. consol e_| og_| evel =\WARN

14

Configuring Atomikos
TransactionsEssentials

#Do you want transaction |ogging to be enabled or not?

#1f set to false, then no | oggi ng overhead will be done
#at the risk of losing data after restart or crash.
#

#com at om kos. i cat ch. enabl e_| oggi ng=true

#Shoul d two- phase commit be done in (nmulti-)threaded node or not?
Zcon1aton1kos.icatch.threaded_ch:true

#Shoul d exit of the VM force shutdown of the transaction core?
Zcon1aton1kos.icatch.force_shutdomn_on_anexit:false

#Shoul d the |l ogs be protected by a .lck file on startup?

#
#com at om kos. i catch. | ock_| ogs=true

3.2. Default Values You Should Override

Although reasonable defaults are provided, you probably should override the following configuration parametersto
suit your application's needs:

e com at om kos. i cat ch. t m_uni que_nane: set thisvalue to aunique name for each application.

e com atom kos. i cat ch. max_ti meout : thisvaue limits the timeout that can be set for any transaction.
More precisely: you cannot specify atimeout that exceeds the limit specified here. Set this value according to the
needs of your application. If you have long queries or updates then the default may not be sufficient.

e com at omi kos. i catch. force_shut down_on_vm exi t : set thisto trueif you want shutdown

behaviour (VM exit) to show backward compatibility with pre-3.3 releases. Note: thisis NOT recommended for
Spring use, since it is the Spring container that should shutdown the transaction core.

3.3. Ant-Style References in the Properties File

Asof release 3.2, avaluein the properties file can reference another property - see the wiki at http://
wiki.atomikos.org for more information and examples.

3.4. Questions
3.4.1. Question 1

If you don't have a configuration file and don't set system properties related to the configuration, where will the
transaction service write log files?

1. Inthe current directory.
2. Inthedirectory where you start your application.

3. Inanew directory, called tmlog.

15

Configuring Atomikos
TransactionsEssentials

3.4.2. Question 2

In the configuration file, there is a parameter called com.atomikos.icatch.checkpoint_interval. If you increase this
parameter's value, then what happens?

1. Theaveragelog file size will be larger.

2. Theaveragelog file size will be smaller.

3.4.3. Question 3

What parameter has no default value and MUST be specified in any configuration file?

16

Chapter 4. Programming Transactional
Applications

For any J2SE application based on Atomikos TransactionsEssentials, we can distinguish the following

main programming styles. Which oneis best for you depends on the way you want to use Atomikos

TransactionsEssentials, and what exactly your application needs. Each option is discussed in more detail in the rest

of this chapter.

1. Regular Applications. Atomikos JDBC/IMS and the User Transaction Use this approach if you want to use our
JDBC DataSource or IMS QueueConnectionFactory adapters to perform JDBC or IMS within the scope of a
transaction.

2. For XA-Level Integration: The JTA TransactionManager Use this approach if you don't want to use our JDBC
or IM S adapters and still want to do JTA/XA transactions with minimal effort.

3. For Sophisticated Needs: The Atomikos User TransactionService This approach alows you to initiate the

startup and shutdown of the transaction service, and gives you full control over how resources are configured.
Y ou will also need this approach if you want to extend transactions across RMI or IMS communication links.

4.1. Reqgular Applications: Atomikos JDBC/IJMS
and the UserTransaction

Thisisthe easiest and most straightforward way of using Atomikos TransactionsEssentials. Y our application uses
the built-in Atomikos resource adapters to connect to the back-end systems, and delimits transactions through our
UserTransaction implementation. No other steps are required (in particular, transaction service startup, recovery and
shutdown are done automatically).

» Getting the UserTransaction

e JDBC: Using an Atomikos DataSource

» JDBC: Using an Atomikos Non-XA DataSource

* JMS: Using an Atomikos QueueConnectionFactory

* JMS: Message-Driven Functionality

* JMS: Pooled Receiver Sessions

* JMS: Pooled Sender Sessions

» JMS: Bridging Different IMS Domains

4.1.1. Getting the UserTransaction

We have a built-in implementation of javax.transaction.User Transaction that you can use for
your application's transaction. To do this, you merely need to construct an instance of class
com.atomikos.icatch.jta.User Transactionlmp (use the default, no-argument constructor):

17

Programming
Transactional Applications

Example 4.1. Getting the User Transaction

com at om kos. i catch.jta. User Transactionlnp utx =
new com at om kos.icatch.jta. UserTransactionl np();

/I now we are ready to do transactions!
/lstartup and recovery of the transacti on nanager
/[/will happen automatically upon first use of utx

Thisisall you need: startup and recovery of the transaction service will happen automatically as soon as you start
using the UserTransaction. Shutdown of the transaction engine istriggered automatically as well, and happens
when your application's VM exits. Also, it isworth pointing out that the UserTransactionlmp class implements
both java.io.Serializable and javax.naming.Referenceable, meaning it can be stored in INDI where available. All
instances of the class com.atomikos.icatch.jta.UserTransactionlmp are equivalent to your application (if you have
many, you can use any of them when you like).

4.1.2. IDBC: Using an Atomikos DataSource

Atomikos provides two main categories of javax.sgl.DataSource implementations: one that is aware of an
underlying (vendor-specific) javax.sgl.X ADataSource, and another one that uses any regular (non-XA) JDBC driver
class. This section discusses the first category, while the next section focuses on the second.

Our DataSource implementation is called com.atomikos.jdbc.AtomikosDataSourceBean. As its name
suggests, this class is a JavaBean class, meaning it has a default no-argument constructor and get/

set methods for setup properties. These properties indicate preferences such as connection pool
settings, and also how to construct and access an underlying RDBM S vendor-specific instance of
javax.sgl.XADataSource. If your RDBMS vendor does not support XA DataSource, then see the next
section on what to do.

In addition, our DataSource class implements both java.io.Serializable and javax.naming.Referenceable so an
instance can be configured and then stored in INDI where available. In order to use this DataSource for your
application's JDBC, you need to get hold of a configured instance:

Example 4.2. Configuring an Atomikos DataSour ce

com at om kos. j dbc. At om kosDat aSour ceBean ds =
new com at om kos. j dbc. At om kosDat aSour ceBean() ;

//set the necessary properties

/! see the javadoc docunentation of the Atom kosDataSourceBean to

/1 get nore information on which properties to set and how

//and see the sanple programin exanpl es/j2se/sinple/jdbc/xadatasource
[/ for the conpl ete exanpl e code

Using the DataSource for transactionsis equally simple: just begin anew transaction, get a connection from the
DataSource, and do any SQL you want. When the transaction is committed/rolledback, all SQL is committed/
rolledback aswell. The typical code pattern for doing thisis shown below.

18

Programming
Transactional Applications

Example 4.3. Using an Atomikos datasour ce

bool ean rol |l back = fal se;
try {
//begin a transaction
ut x. begi n();

/l access the datasource and do any JDBC you like
Connection conn = ds. get Connection();

// al ways cl ose the connection for reuse in the
/ | Dat aSour ce-i nt ernal connection pool
conn. cl ose();

}
catch (Exception e) {

/1 an exception means we should not commt
rol | back = true;

}

finally {
if (!'rollback) utx.conmt();
el se utx.roll back();

}

4.1.3. JDBC: Using an Atomikos Non-XA DataSource

For JDBC vendors that don't support XADataSource, we have a DataSource implementation that allows integration
with Atomikos TransactionsEssentials nevertheless.

It should be clear that this has limitations with respect to recovery: if thereisno XA functionality, then
pending transactions can't be recovered after restart or crash of your application. Thisis no problem if you
only use one database, but it can be a serious data integrity risk if you use two or more databases/systems
within the scope of the same transaction.

Example 4.4. Using an Atomikos Non-XA DataSour ce

com at oni kos. j dbc. nonxa. At om kosNonXADat aSour ceBean ds =
new com at om kos. j dbc. nonxa. At omi kosNonXADat aSour ceBean() ;

//set the necessary properties

//see the javadoc docunentation of the Atom kosNonXADat aSourceBean to
/1 get nore information on which properties to set and how

/1 and see the sanple programin exanpl es/j2se/sinple/jdbc/drivermanager
/1for the conpl ete exanpl e code

Thetypical code pattern for doing transactions that include work in a AtomikosNonX ADataSourceBean is the same
as the one in the previous case.

19

Programming
Transactional Applications

4.1.4. IMS: Using an Atomikos JMS ConnectionFactory

For IMS queues and topics, Atomikos also has a built-in connector represented by the class
com.atomikos.jms.AtomikosConnectionFactoryBean. Similar to our DataSource, instances of this class need aJMS
vendor-specific X AConnectionFactory to work with. Please refer to the javadoc of this class for more information.
A typical usage pattern is show below for queues (topics are very similar).

Example 4.5. Using an AtomikosConnectionFactoryBean

See the examplesin the download folder for how to use this class.
JMS behaves differently in combination with JTA/XA transactions. In particular:
» Sending amessage in a JJTA transaction has no effect until commit.

» Messagesthat are received in a JTA transaction will only be removed from the queue at transaction commit
time.

The consequences of this behaviour are also interesting:

1. The sender and receiver processes of a message always execute in a different transaction (see the figure below):
the sending transaction has to commit before the message is actually transported to the receiver.

2. Becauseof 1, it isimpossibleto receive areply for amessage sent in the same transaction.
3. Also because of 1, thereis no way to rollback the sending process when the receiver has fatal errorsin

processing arequest. The sender's transaction has already committed before the receiver even gets the message
with the request.

Sender Receiver

T g

Always keep these restrictions in mind when using IMSin a JTA/XA transaction. These restrictions
are characteristic of any standard J2EE application that combines JM S and transactions. It is possible to
use Atomikos TransactionsEssentials without being bound by these restrictions, provided that you use

20

Programming
Transactional Applications

the propagation mechanism outlined later in this manual. In that case, you use aregular (non-XA, non-
Atomikos) JIM S QueueConnectionFactory and add the transaction propagation to each message that you
send. Thisway, sending amessage is not delayed until commit, the transaction context can be imported at
the receiver, and both ends of the IMS communication link can execute in the same transaction.

4.1.5. IMS: Message-Driven Functionality

Atomikos TransactionsEssentials also contains afeature that is similar to message-driven beans, alowing your
application to process M S queue messages in areliable and transactional way. In particular, your application can
register implementations of javax.jms.MessageListener to receive messagesin atransaction. Thereis no need for
developersto know EJB in order to do this.

For more information, see the javadoc about com.atomikos.jms.extra.MessageDrivenContainer as well asthe
example programs included in the release.

4.1.6. IMS: Managed Sender Sessions

Sending messages with the benefit of pooled and managed sessions can also be done, by using the
com.atomikos.jms.extra.S ngleThreadedIJmsSender Template. This class allows you to reuse the same session for
sending multiple messages, and refreshes the session (if necessary) to simplify application-level code. For more
information, please check the javadoc as well as the example programs included in the release.

The com.atomikos.jms.extra.SingleThreadedJmsSender Template is not thread-safe. If you have threaded
code then use com.atomikos.jms.extra.ConcurrentJmsSender Template instead.

4.2. For XA-Level Integration: The JTA
TransactionManager

If you don't want to use the Atomikos connectors for JDBC or IM S, then you can still use our transaction manager,
but you will have to integrate at the level of JTA/XA. This meansthat you will have to explicitly enlist/delist
XAResource instances with the transaction service (and within each transaction). This section explains how to do
this.

This approach for using Atomikos TransactionsEssentials will only work if the configuration parameter
com.atomikos.icatch.automatic_resource registration is set to true.

4.2.1. Getting the TransactionManager

Our implementation of javax.transaction. TransactionManager is represented by the class
com.atomikos.icatch.jta.User TransactionManager. Like in the case of the UserTransaction, you don't
need to do anything special besides constructing an instance of this class. All the rest (transaction service
startup, recovery and shutdown) is handled behind the scenes. If you have multiple instances of this
TransactionManager class then you can use any you like: they are all equivalent to your application.

21

Programming
Transactional Applications

Like UserTransactionlmp, the class UserTransactionManager implements both java.io.Serializable and
javax.naming.Referenceable, meaning it can be stored in INDI where available.

For J2EE applications, the automatic startup mechanism is undesirable since multiple deployed applications
could end up with different transaction engines. Thisis not recommended, and therefore J2EE application
programmers should use the class com.atomikos.icatch.jta.J2eeTransactionManager instead: this class

has the same functionality except that it doesn't trigger automatic startup of the transaction engine. In that
case, you should also use the Atomikos control panel web-application (included in the installation) to
automatically initiate transaction service startup and shutdown when the application server starts/stops.
Likeits sibling class, the J2eeTransactionManager implementation can also be bound in INDI where
available.

4.2.2. Typical Code Pattern for JTA/XA

For JTA/XA integration, the recommended code pattern is shown below. The caseisillustrated for an
XADataSource, but other XA-capable resources work the same way. The essence of the example is that you need
to start atransaction, enlist/delist one or more X AResource instances, and then commit or rollback. Thisis more
complicated than if you were using our JDBC or JM S adapters (as in the previous case), because our adapters do
most of thisfor you. Please see the demo application in examples/j2se/simple/xa for complete and working source
code.

Example 4.6. Typical pattern of JTA/XA usage

/1 GENERI C. get the transacti on nanager
com at om kos. i catch. jta. User Transacti onManager tm =
new com at om kos.icatch.jta. User Transact i onManager () ;

//the transaction service will startup and recover whenever the
/[/tmis used for the first tine

/1 SPECI FI C FOR JDBC: get the XADataSource in a vendor-specific way

//this is normally done inside a connection pool

XADat aSour ce xads = ...//vendor-specific, see your JDBC vendor docs for info
XAConnecti on xaconn = xads. get XAConnection();

bool ean rol | back = fal se;
try {
/1 GENERI C. begin and retrieve tx
t m begi n();
Transaction tx = tm get Transaction();

/1 SPECI FI C FOR JDBC: get the XAResourc fromthe JDBC connection
XAResour ce xares = xaconn. get XAResour ce();

/1 GENERI C. enlist the resource with the transaction

/I NOTE: this will only work if you set the configuration paraneter:
//com at om kos.icatch. automatic_resource_regi stration=true

/lor, alternatively, if you use the UserTransacti onService
/lintegration node explained | ater

tx.enlistResource (xares);

22

Programming
Transactional Applications

/1 SPECI FI C FOR JDBC. access the database, the work will be
//subject to the outcome of the current transaction

// GENERI C. delist the resource
tx. del i st Resource (xares , XAResource. TMSUCCESS) ;

}
catch (Exception e) {

rol | back = true;

t hrow e;
}
finally {
/1 GENERI C: ALWAYS terminate the tx
if (rollback) tmrollback();
else tmcommit();
/1 SPECI FI C FOR JDBC. only now cl ose the connection
/[li.e., not until AFTER commit or roll back!
xaconn. cl ose();
}

Note that the X AConnection in the code fragment above was not closed until AFTER the transaction
committed/rolledback. Thisis necessary because the transaction manager needs the connection to stay open
until after two-phase commit is done. Otherwise, there is no way that the transaction manager can talk to
the database any more (notice that the transaction manager is using the X AResource instance - which in
turn relies on the X AConnection). If this scenario is unrealistic for your application, then we recommend
that you use the UserTransactionService approach outlined in the next section.

4.3. For Sophisticated Needs: The Atomikos
UserTransactionService

Thisisthe most sophisticated and flexible approach for using Atomikos TransactionsEssentials: it gives you full
control over almost any aspect of the transaction service. In this guide, we only explain the basics to get you started.
More information can be found in the Atomikos APl Guide. This section is outlined as follows:

e Getting a UserTransactionService Instance

» Overriding static propertie

» Explicit Resource Registration and Recovery

* Registering a LogAdministrator

e Explicit Startup and Shutdown

» Getting the UserTransaction

e Getting the TransactionManager

23

Programming
Transactional Applications

4.3.1. Getting a UserTransactionService Instance

Theinterface com.atomikos.icatch.config.User TransactionService is a proprietary interface of Atomikaos. The

reason for thisis simply that no current standard defines how to setup and initialize a transaction service. This
interface is the key to doing the things that are outlined in this section; it is essentia for using some of the more
sophisticated features of Atomikos TransactionsEssentials. Getting an instance that implements this interface is done
by constructing an object of class com.atomikos.icatch.config.User TransactionServicel mp:

Example 4.7. Constructing the User TransactionSer vice obj ect

com at om kos. i catch. confi g. User Transacti onService uts =
new com at om kos. i cat ch. confi g. User Transacti onServi cel np();

Like all the transaction manager objects we have discussed so far, you can have as many instances of this
classasyou like. They are all equivalent - except for doing explicit startup of the transaction service (which
can depend on instance-specific properties, as we will see shortly). Therefore, Atomikos recommends that
you limit your number of instances to one.

4.3.2. Overriding static properties

Overriding static propertiesis done via an object of type com.atomikos.icatch.config. TS nitInfo. Y ou can create such
an object by calling the method createTS nitInfo on the UserTransactionService object:

Example 4.8. Creating a T Sl nitInfo object

com atom kos.icatch.config.TSInitlnfo info = uts.createTSInitlnfo();

//use the info object to supplenent or override the static configuration file
i nfo.setProperty ("com atom kos.icatch.checkpoint_interval” , "2000");

Y ou will also need an instance of TSInitInfo for initializing (starting) the transaction service (see later in this
section).

4.3.3. Explicit Resource Registration and Recovery

The procedures outlined in this subsection only work correctly if the transaction serviceisinitialized with
parameter com.atomikos.icatch.automatic_resource _registration set to false!!!

One of the most interesting features of the UserTransactionService is that you can explicitly register resources for
recovery and online transaction processing. In other words, this allows you to gain fine-grained control over what
resources should be recovered, how they should be recovered or used, and when recovery should happen.

Explicit resource registration is especially recommended in those cases where the vendor-specific
XAResource implementations are not fully JTA/XA compliant. The most common deviation from the

24

Programming
Transactional Applications

specification is that the X AResource.isSameRM () method does not work correctly. This can lead to
warning messages in the transaction manager's console file when you use one of the previous approaches to
programming with Atomikos TransactionsEssentials.

The types of resources that are supported for this approach are the following:
» JDBC/XADataSource: use class com.atomikos.datasource.xa.jdbc.JdbcTransactional Resource.
* IMS/XAQueueConnectionFactory: use class com.atomikos.datasour ce.xa.jms.JmsTransactional Resour ce.

» JCA: use class com.atomikos.datasour ce.xa.jca.JcaTransactional Resour ce.

Note that there is no equivalent for NonX ADataSource here: using non-XA JDBC driversis not
recoverable, so explicit registration is not relevant for such drivers.

Each of these resource typesis similar to the others, the only real difference isthat they use a different type of
underlying connector to get XA Connection objects from when needed. Thisisal interna to the implementations
and is of no further concern here. All that matters is that you know how to construct an instance when needed, and
how to register. The following shows how to do this for JDBC; the other cases are completely analogous:

Example 4.9. Explicitly registering a (JDBC) resour ce for recovery.

/1 Get a vendor-specific instance of an XADat aSource
XADat aSour ce xaDataSource = ... //vendor-specific for your JDBC driver

//construct a correspondi ng resource that uses the XADataSource
//for recovery and normal transaction processing;, give it a
/1uni que nane for recovery and identification in the transaction service
JdbcTransacti onal Resource jdbcResource =
new JdbcTransacti onal Resource (
"com myconpany. uni que. name"
xaDat aSour ce) ;

/1 VERY | MPORTANT: register the resource with the transaction service
//to enable recovery; must be done BEFORE you startup!
uts.regi sterResource (jdbcResource);

Add a separate resource for each connector (DataSource, QueueFactory or JCA resource adapter) that
you expect to use. While you can also register resources after startup, you can expect better and smoother
workings of the transaction service when you register before startup.

This shows the essence of what you should know about resource registration. More information about these classes
can be found in the javadoc included in the install ation.

4.3.4. Registering a LogAdministrator

An additional feature of Atomikos TransactionsEssentialsis that you can optionally register one or more
instances of com.atomikos.icatch.admin.LogAdministrator. Instances of this interface are supplied with a

25

Programming
Transactional Applications

com.atomikos.icatch.admin.LogControl Thisis an interface towards the transaction manager that outlines
administrative tasks that are available when the transaction service is running. The main purpose of these tasksis
purging the logs from old transactions, and forcing problematic transactions to terminate one way or another.

A couple of standard implementations of LogAdministrator are supplied out-of-the-box by Atomikos: a
JmxLogAdministrator for IMX administration environments, a SimpleL ogAdministrator for general Ul
environments, and a LocalLogAdministrator for Swing administration of the transaction service. By registering

an instance of one of these, you will be able to retrieve the LogControl after startup, and get access to the
administration features of the transaction service. See the Atomikos API guide for more information.

4.3.5. Explicit Startup and Shutdown

Having come this far, we can now look at how to perform explicit startup and shutdown of the transaction service.
Going back to the UserTransactionService instance gotten earlier, the following illustrates how to do this:

Example 4.10. Explicit startup and shutdown

User Transacti onService uts = ...//see earlier
TSInitinfo info = uts.createTSInitlnfo();
/loverride properties, register resources, register |ogadm nistrator

//startup of transaction service
uts.init (info);

//here, the transaction service is running and has recovered all resources

//registered before

/1 NOTE: any resource you register will still be recovered, but this is not

//recommended in all cases

//the application is ready for doing ebusi ness

/1 shutdown the transaction service,

//but wait for active transactions to conplete

uts. shutdown (false)

/1if you don't want to wait, use uts.shutdown (true);

Y ou can call init and shutdown as many times as you want without exiting your application. For best
results, we recommend that you use the same UserTransactionService instance while doing this.

4.3.6. Getting the UserTransaction

The UserTransactionService can be used to get a javax.transaction.User Transaction (which should only be used
after startup):

26

Programming
Transactional Applications

Example 4.11. Getting the User Transaction via the User TransactionService

//startup the transaction service
/[luts.init (info);

/1 now, the UserTransaction is available as follows:
j avax.transaction. User Transacti on utx = uts.getUserTransaction();

Likeall our JTA objects, this UserTransaction can be bound in INDI where available.

Although the previously outlined approach of using an instance of

com.atomikos.icatch.jta.User Transactionlmp will still work, thisis not recommended here: doing so
could lead to accidental startup of the transaction service (by the auto-initialization feature) and that could
interfere with the intention of explicitly controlling startup through the UserTransactionService.

4.3.7. Getting the TransactionManager
Likewise, javax.transaction.TransactionManager can be gotten like this (and should also be used after startup only):

Example 4.12. Getting the TransactionM anager viathe User TransactionService
/lstartup the transaction service
/[luts.init (info);

/I now, the Transacti onManager is available as follows:
j avax.transaction. Transacti onManager tm = uts. get Transacti onManager () ;

Again, this can be bound in INDI where available.

4.3.8. Questions
4.3.8.1. Question 1

If you don't need to use your own connection pooling for JDBC, then what is the easiest way to start using
TransactionsEssentials in your application:

1. Construct an instance of com.atomikos.icatch.jta.UserTransactionlmp
2. Construct an instance of com.atomikos.icatch.jta.User TransactionM anager

3. Construct an instance of com.atomikos.icatch.jta.User TransactionServicel mp

4.3.8.2. Question 2

If you don't want to use Atomikos connection pooling, then what is the easiest way to start using Atomikos
TransactionsEssentials in your application:

27

Programming
Transactional Applications

1. Construct an instance of com.atomikos.icatch.jta.UserTransactionlmp
2. Construct an instance of com.atomikos.icatch.jta.User TransactionM anager

3. Construct an instance of com.atomikos.icatch.jta.UserTransactionServicelmp

4.3.8.3. Question 3

Which of the following require the use of com.atomikos.icatch.jta.UserTransactionServicelmp?
1. Explicitly registering resources for recovery and online processing

2. Explicit control over startup and shutdown of the transaction service

3. Export or import atransaction in RMI/I1OP networks

4. Enlist/delist of XAResource instances

28

Appendix A. Answers

A.l. Chapter 2. Answers
A.1.1. Question 1

Y ou can not control the joint outcome of a database update and a IM'S message publication by merely ordering the
executions. For instance, if you do a successful database update first and then try to send a IM S message, then what
do you do if the IMS part fails? Y ou could argue that the JIDBC and the IMS allow you to explicitly control commit
and rollback, but that does not change the real problem: in what order should the commits of the database and the
message send be done? If you commit the database first, there is no way to go back if the later IMS commiit fails.

A similar argument shows that the IMS can not be committed first either. Controlling the order of executions or the
order of commitsis not a solution; that is why two-phase commit is used.

A.1.2. Question 2

The exception is of type HeuristicMixedException. The transaction manager is cut off from the in-doubt database,
so it does not know whether the database will make a heuristic decision or not, and if it does then it could be either
commit or rollback. A violation of the requirement that all resources have the same outcome is possible.

A.1.3. Question 3

The method setRollbackOnly can be called almost anytime. The method rollback should only be called after all
resources that were enlisted have also been delisted accordingly. Otherwise, XA-level errors may occur during
rollback.

A.1.4. Question 4

If a SQL Exception happens in a database update, there is a possibility that the database state for the active
transaction is corrupt or does not correspond to what is expected from the point of view of the application. The
transaction should be rolled back to make sure that the database is restored to the previous and correct state.

A.1.5. Question 5

The JTA transaction manager associates the thread to the transaction you create. This means that if you call
TransactionManager.begin() at the beginning of the method invocation then the executing thread has a JTA
transaction. If you don't terminate this transaction then it will become a pending active transaction, subject to

JTA rollback after timeout (and this will happen). Before the timeout, other requests may be executed in the same
thread. If that happens then the second request's TransactionM anager.begin() will create a subtransaction of the still
pending transaction. So even if the second invocation calls commit, this will be a commit of a subtransaction, whose
effects will not become permanent until the parent transaction commits. But the latter will not happen because the
parent is a pending active transaction that will be rolled back if it times out. Thisisillustrated in the picture below.

29

Answers

Transaction 1 [

o) Second invocation
First invocation

begin

Transaction
1.1

Y

TransacticnManager

=T fonManager

Thread 1 i begin

Thread 1

l Exit without rollback or commit

. Vi 10M: TETR ACTI 1.1
1. PENDING TRANSACTION 1 2. SECOND INVOCATION: CREATE TRANSACTION

Transaction 1 |

g rollback after timeout
Second invocation !
r "
Transaction |
: ioni [————»
Thread 1 commit TransactionManager | “gommit i g "
| (1) e Transaction 1 |

Exit with commit

4, F I T 1
3. SECOND INVOCATION: COMMIT TRANSACTION 1.1 ROLLBACK OF INVOGATIONS 1 AND 2

A.2. Chapter 3: Answers
A.2.1. Question 1

Thelogs will be written in the directory where you start your application. See the sample configuration file listing,
which shows the default values. These are the values used if no other information is available.

A.2.2. Question 2

The average log file size will be larger. The checkpoint interval isthe number of writes to the sequential log file
before thisfile is cleaned up, so if this number is higher then the average log file size will increase aswell. The
cleanup encompasses purging the log by deleting information about terminated transactions.

A.2.3. Question 3

The parameter com.atomikos.icatch.service needs to be specified in every configuration file.

A.3. Chapter 4: Answers
A.3.1. Question 1

The easiest way isto construct an instance of com.atomikos.icatch.jta.UserTransactionlmp (and use thisin
combination with AtomikosDataSourceBean).

30

Answers

A.3.2. Question 2

Construct an instance of com.atomikos.icatch.jta.UserTransactionManager and make your application call
enlistResource/delistResource for each X AResource that you access.

A.3.2.1. Question 3

Which of the following require the use of com.atomikos.icatch.jta.UserTransactionServicelmp?
1. Explicitly registering resources for recovery and online processing: yes

2. Explicit control over startup and shutdown of the transaction service: yes

3. Export or import atransaction in RMI/I1OP networks: yes

4. Enlist/delist of XAResource instances: no: our User TransactionManager can do that

31

Appendix B. Getting More out of
Atomikos TransactionsEssentials

There are some Atomikos-specific features that allow you to get more out of using TransactionsEssentials. Most
of them are related to heuristic problem cases, and information that is available to resolve them. An explanation of
these features follows next.

B.1. The HeuristicMessage Interface

One of the patent-pending features of Atomikosisthe ability to include application-level commentsin the
transaction logs.

Heuristic exceptions can be well-documented with their effects on the business-level: if you add an application-level
comment for each interaction with a data source or JIM S queue, then the occurrence of a heuristic exception will
allow the corresponding comments to be retrieved from the logs. The result is that heuristic exceptionsinclude their
application-level effects, thereby easing administration. The comment's interface typeis discussed in this section;
the later sections show how to add them to the interactions (and to the logs).

Eerializahleﬁ

|

HeuristicMessage ()

+toString() : String

7

StringHeuristicMessage

+StringHeuristicMessage(string : String)
+oString() : String

32

Getting More out of Atomikos
TransactionsEssentials

The figure above shows the basic interface for the kind of comments we mentioned. The

interface is com.atomikos.icatch.HeuristicMessage and the supplied implementation class is
com.atomikos.icatch.SringHeuristicMessage. Instances of this implementation class can be used to document
interactions through JDBC or JMS. The string content will be saved in the logs along with the transaction log
information.

B.2. JIDBC: The HeuristicDataSource Interface

For JDBC interactions, the heuristic messages can be added at the time of getting a connection from an Atomikos
DataSource. That is possible because our DataSource not only implements the interface javax.sgl.DataSour ce, but
also the Atomikos interface com.atomikos.jdbc.HeuristicDataSour ce, shown below.

javax.sql.DataSource

=<interface=> com.atomikos. jdbc.HeuristicDataSource

getConnection (com.atomikos.diagnostics HeuristicMessage): Connection
getConnection { String , String , com.atomikos.diagnostics. HeuristicMessage): Connaction

com.atomikos.jdbec.JtaDataSourcelmp

==gonstructor== taDataSourcelmp { XAConnectionFactory, int, int, int)
close()

Instead of merely getting a connection from an Atomikos DataSource (as done with regular DataSource instances),
you can use the getConnection method with one extra parameter that supplies a HeuristicM essage (or a String as
from release 2.0). Thiswill add the message to the logs in case of JDBC.

Y ou have to use the IDBC with Atomikos DataSource for this approach to work.

33

Getting More out of Atomikos
TransactionsEssentials

B.3. JIMS: The HeuristicQueueSender Interface

For JM S send operations, the addition of a heuristic message is possible because the QueueSender instances that you
create through the adapter classes are actually of type com.atomikos.datasour ce.xa.jms.HeuristicQueueSender.

javax.jms.QueueSender

=<interfaces> com.atomikos.datasource.xa.jms.HeuristicQueueSender

send [Message msg , HeuristicMessage hmsg),

zend [Message msg . int pty , int timeTolive , HeuristichMessage hmsg);

send [Queue g, Message msg , HeuristicMessage hmsg),

send [Queue q , Message msg . int pty , int timeTolive , Heuristichessage hmsg);

By performing a cast to this interface upon calling QueueSessi on.createSender (queue) you can gain accessto the
extra functionality.

Y ou have to use the IMS with Atomikos JIM S adapters for this approach to work.

B.4. IMS: The HeuristicQueueReceiver Interface

For JM S receive operations, the addition of a heuristic message is possible because the QueueReceiver instances that
you create through the adapter classes are also of type com.atomikos.datasour ce.xa.jms.HeuristicMessageConsumer .

Getting More out of Atomikos
TransactionsEssentials

javax.jms.MessageConsumer

=<interface=> com.atomikos.datasource.xa.jms.HeuristicMessageConsumer

receive [HeuristicMessage hmsg) : Message;
receive | HeuristicMessage hmsg , long fimeout) : Message;
receiveMoWait [HeuristicMessage hmsg) - Message;

By performing a cast to this interface upon calling QueueSessi on.createRecei ver (queue) you can gain access to the
extra functionality.

Y ou have to use the IMS with Atomikos JM S adapters for this approach to work.

35

Appendix C. Using Atomikos
TransactionsEssentials in (Web)
Application Servers

Atomikos TransactionsEssentials can also be used in web containers or application servers. Configuration is
straightforward if you are using Spring (see the examples): you merely need to configure Spring to use Atomikos
TransactionsEssentials.

36

Appendix D. Troubleshooting

For searching known problems and solutions, or in order to conctact technical support, please go to http://
www.atomikos-support.com and login to our support forums.

37

Appendix E. References

» http://java.sun.com: Sun's Javawebsite with the JTA, JDBC and JM S specifications and extra information.
* http://www.atomikos.com: Atomikos website; please check regularly for updates and support information.

» Distributed Transaction Processing: The XA Specification (ISBN 1-872630-24-3). Published by The Open
Group (http://www.opengroup.org).

38

