Atomikos™
ExtremeTransactions™ Guide

Atomikos ExtremeTransactions Guide
Copyright © 2008 Atomikos

Table of Contents

O [gL oo (8 1o o R P T PP PP PPPPPTI 1
1.1. Who Should Read ThiS GUITEcoouuiiiiiii et e e e 1
1.2, PrereqUiSIte REBINGc.uuuiiiii ettt ettt e 1
1.3, SyStEM REQUITEITIENESceetiieiieii ettt ettt e et et et et et e et et e e et et e e et et e e e e nban s 1
1.4, INStAlEtioN INSLIUCHIONS ...ttt ettt et e et e et e e et e e e e e 1
1.5. The Impact of SOA ON TraNSACIONScceereieieeii ettt ettt et e e e e e e e enea s 1
1.6, ATCRITECIUIE ...t ettt ettt ettt et e e e e e nb e e eneans 2
1.6.1. Features Inherited from TransactioNSESSENtialS™ccouviiiiiiiiieiii e 2
N 1 O O T TSP TP P TR UPPPTRRPPPPIN 2
1.6.3. Extending Transactions AcCross the NEtWOIKoooeuuiiiiiiiiii e 3
2. Writing Transactional Services with EXtremeTransaCtionS™iiiiiiiiiiieiii e 4
2.1. IntraVM Transactions: XTP/GRID ArChIiteCIUIEoovviiiiieiiii e 4
2.2. Inter-VM Transactions: Composite Applications and SOAoviiiiiiiiiiiiii e 5
2.2.1. The SOA Problem HIUSLIAIEccouuieiiii et 5
2.2.2. Solution 1: ExtremeTransactions™ JTA SUPPOITcceevuneieiiieieiii et e 7
2.2.3. Solution 2: ExtremeTransactions™ TCC™ SUPPOITcevvneeeiriieeeiiieeeeeii e eeeii e eeiiaeeeens 8
2.3. The Atomikos™ Try-Confirm-Cancel (TCC™) API: Distributed Service Transactions Without XA
... 9
2.3.1. Programming TCC™ APPHCALIONSuuieiiiiieeiiii et 10
2.3.2. CompPatible ProtOCOISiieiieeeii e 21
3. Configuring ExtremeTransaCtionsS™ BeNaVIOUIcc.uuuiiiiiiiieiiiiie ettt 22
3.1. Enabling EXtremeTranSaCtioNS™couuuiiiiiiii et e et e e et e e et e e et e e e ent e e eenaaaeees 22
3.2. RMI-JRMP CONFIQUIBLION ...ttt ettt e e e e e et e e e ne s 22
3.3. RMI-TTOP CONfIQUIALIONueeiitiiee ettt ettt et e et e et e e e e et e e e eeba e eeeens 22
34, DiISabliNg RMI ...ttt 23
3.5. Setting Client Trust PrefErEnCeScoveii e et e e 23
3.6. Enabling Webh Service TranSaCIONS ... cccuuuu ittt ettt e e e et eeenies 23
4. Mistaken Alternatives for EXtremeTranSaCtioNS™ouuiiiiiiiieiiiii e e e e enees 26
4.1. Exposing Cancel Operations as @ BUSINESS SEIVICEuuiiiiiiieiii et 26
4.2. USINg REliaDI@ MESSAgINGcvvuueiiiiiieiie ettt 26
AL GlOSSANY .ttt et e e et e e et et e e et et e eeenta e eenes 27
B. MOre INFOMMEIIONeeite ettt ettt ettt e e et et e e et et et e e e e et reeeeabe e eeenbnnaeeee 28

List of Figures

1.1, EXtremeTransactionS ATCHITECIUNEcouuui ittt ettt e et e et e e e e et e e eenaaeeees 2
2.1. XTP GRID architecture with intraeVIM tranSaCtioNScoeuuuiiiiiiieeiiiie e 4
2.2. Example of a composite application SOA WOIrKFIOWcoouuiiiiiiiii e 6
2.3. Example of a composite application With €rror [0QICveiiiiiiieii e 7
2.4. TCC: focus on the happy Path i e 8
2.5. TCC™ example: arling reSerVation SEIVICEuuiiiiiiie ettt ettt e e e e s 10
2.6. TCCSENVICE SEALE DIBOIAIM ... eeeetteeeeitt ettt ettt ettt e et et e e et et e e e et e e e eeter e e e eetaneeeenbnnaeeenes 14
2.7. Distributed TCC™ execution between two transactional SEIVICESccceuuuieiiiiiiiiiiiiir e 16
2.8. Distributed TCC™ Prepare PRESEoeeeueu ettt ettt ettt e et e e et e e e e e e e 17
2.9. Distributed TCC™ CONfirMation PhaSEcceuuueiiiii ettt e e e e et e e enaa e eeees 18
2.10. Distributed TCC™ CanCElalioN PRASEciierieeieiii ettt e e e e e 19
2.11. Distributed TCC™ FaIIUIEottt e e et e ettt e et ebtreeeeaeaeeees 20

List of Examples

2.1,
2.2,
2.3.
24,
2.5.
2.6.
2.7.
3.1
3.2

TCC™ example: an airline reservation WED SEIVICEiiiiii e 10
Example of 8 TCC™ PAYMENE SEIVICEuuiiiiti ettt e ettt ettt e ettt e e e et e e e e et e e e eetaeeeertn e eeentnaeaees 11
DistribDUtEd TCC™ EXECULIONeevtieeeetiiie ettt ettt e et e e et e et e e et et e e e e et e e e e et e e et et e eeeenn s 16
DistriDULEd TCC™ PIEDEIE ... ceeeteeeeeiit ettt ettt e e et e e et et e et e e et et e et eate e e e e et neeeesba e eeentnnaeeees 17
Distributed TCC™ CONFIFMEIIONceeertieeeeit ettt ettt et e e e et e eeeet e e e eat e e eeat e e eent s e eeentnaaaeens 18
Distributed TCC™ CaNCEIBHIONueiieitieeeet ettt e et e et et e e et et e e e eebeaaeeeenaaaeeee 19
DistribDULEd TCC™ FaIUIE ... ittt ettt e et e et et e e et e e enaa s 20
Configuring the ImportingTransactionHandler on the receiving Sidecoovvviiieiiiiinncei e, 23
Configuring the ExportingTransactionHandler on the client Side ... 25

Chapter 1. Introduction

This guide introduces you to the revol utionary transaction technology incorporated into ExtremeTransactions™, the
commercia version of our TransactionsEssentials™ core.

Distributed transactions have always been a debatabl e topic where the numerous opponents typically used to
complain about the poor characteristics of traditional ACID standards in this area (where ACID means Atomic,
Consistent, Isolated and Durable - see the Glossary in appendix).

This guide will show you how times have changed: thanks to Atomikos™, it is now possible to build distributed
(and even asynchronous) systems with transactional guarantees without having to resort to the limitations of
traditional ACID technologies (although you can still do that if you want).

1.1. Who Should Read This Guide

Y ou should read this guide if you are interested in any of the following:

L earning about transactional services and GRIDs and what they can do for you.
Enabling your web services for ExtremeTransactions™.

Making your existing JTA/XA transactions participate in distributed service transactions.
Programming state-of-the-art, compensation-based services (departing from ACID).

Supporting distributed transactions without the classical XA support (unlike ACID).

2. Prerequisite Reading

Y ou can read to this guide to grasp the concepts, but in order to really implement services

with ExtremeTransactions™ you should be familiar with the concepts explained in the guides
AtomikosTransacti onsEssential sGuide and AtomikosAPI Specification. If you haven't read those yet, please
do so first.

1.3. System Requirements

The following platform is required for ExtremeTransactions™:

Java 1.4 or higher.
At least 128 MB of RAM.

1.4. Installation Instructions

Please see the installation instructions in the getting started pages.

1.5. The Impact of SOA on Transactions

A service-oriented architecture requires fundamental changes from the traditional architectural viewpoint; traditional
monolithic applications are (by definition) built in standalone mode, meaning that distributed transactions are rarely
needed. By contrast, services are meant to be only a part of a composite application.

Introduction

The result: many service-based applications of the new generation will be distributed by default. This drastically
overturns the traditional architectural requirementsin that distributed transactions are now more of a necessity than
ever before. ExtremeT ransactions™ answers these new needs.

1.6. Architecture

The architecture of ExtremeTransactions™ is shown below, along with its relationship to TransactionsEssentials™.

Figure 1.1. ExtremeTransactions Ar chitecture

ExtremeTransactions
""" TransactionsEssentials :
| I
| I
L | JTAXA JDBC JMS | TCC RMI lIOP SOAP
: |
| I
:
: CompositeTransaction
: Model
|
e)

The main features offered by ExtremeTransactions™ (as shown on the diagram) are the following:
» JTA/XA support: you can start and commit/rollback transactions according to Sun's JTA API.

» JDBC support: connection pooling and JTA/XA-aware datasource implementations.

» JMSsupport: message-driven receivers and senders - even outside the application server.

» TCC™ support: our revolutionary compensation-based transaction model for loose coupling. With TCC™, you
can focus on the happy path of your workflow logic, and let us take care of the rest.

» Extending transactions across the network: the scope of rollback and commit can be extended to other processes,
called by RMI, 11OP, SOAP or almost any other protocal.

1.6.1. Features Inherited from TransactionsEssentials™

ExtremeTransactions™ is the commercia extension of TransactionsEssentials™ so it contains all the functionality
offered by the latter:

» JTA/XA support for ACID transactions
» JDBC support

e JMSsupport

1.6.2. TCC™

One of the main innovations found in ExtremeTransactions™ is support for the TCC™ (Try-Confirm/Cancel)
model. As explained later in thisguide, TCC™ is a paradigm for the construction of transactional serviceswhile

Introduction

preserving the capabilities for loose coupling and asynchronous interactions. This way, ExtremeTransactions™
effectively eliminates the main argument against a transactional SOA: there is no more extended locking of data
(required for traditional two-phase commit), and the use of local transactions sufficesin order to get distributed
consistency.

1.6.3. Extending Transactions Across the Network

A transaction started in one application (or service, depending on the context) can optionally be extended
("propagated") across the network. As aresult, rollback or commit of the original transaction will include all the
work donein al of the processes to where the transaction was propagated. This mechanism works both for classical
JTA/XA transactions as well as for networked TCC™ services.

This extension mechanism allows for the construction of transactional composite applications; the TCC™ paradigm
avoidstight coupling and eliminates traditional locking problems on the data.

Chapter 2. Writing Transactional
Services with ExtremeTransactions™

2.1. Intra-VM Transactions: XTP/GRID
Architecture

Anintra-VM transactional service GRID is usually based on IMSfor receiving messages from some message
bus and then inserting some results into a database via JDBC. Gartner™ has termed this style of processing XTP
(extreme transaction processing). The usual architecture is shown below.

Figure2.1. XTP GRID architecturewith intra-VM transactions

Message Bus

g J4 U4 04

Service Service Service Service Service

Instance Instance Instance Instance Instance

ExtremeTransactions™ guarantees that the messages (requests) are either still on the message bus, or in the

database, but nothing in between. In particular, ExtremeTransactions™ avoids message |0ss (missing requests) or
duplicate delivery.

For examples of applications that follow this architecture, see the IMS examplesin the download of
ExtremeTransactions™.

Writing Transactional Services
with ExtremeTransactions™

It isimportant to realize that for this architecture, the typical scope of atransaction is the processing of
individual (queued) requests. In particular, the sender of arequest has no control over the outcome of its
processing. If such control is desired then we recommend our TCC™ approach instead.

2.2. Inter-VM Transactions: Composite
Applications and SOA

SOA and the composite application (an application composed of multiple related service cals to different services)
can reguire something more complex than the previous architecture. This section outlines the problems encountered,
and two solutions offered by ExtremeTransactions™.

2.2.1. The SOA Problem lllustrated

SOA applications are different from the previous case: the transaction scope effectively spans multiple services and
clients. For a composite application, this means that a transaction can extend over the entire workflow. An example
of such aworkflow is shown below.

Writing Transactional Services
with ExtremeTransactions™

Figure 2.2. Example of a composite application SOA wor kflow

Workflow Layer

=} =

‘ Service A \ ‘ Service B \ ‘ Service C \ ‘ Service D \ ‘ Service E \

So far we have only shown the happy path: aslong as no failures or crashes happen, this will work. However, in
the realistic case of failures or crashes, the workflow of a composite application becomes a lot more complex: not
only do we need to add undo logic in the workflow model, in addition we aso need to model the inter-dependencies

among undo operations and the right order. Finally, even more complexity comes into play when one considers the
possibility of failuresin the undo logic itself and when to retry the undo.

Theresult is often a composite application that becomes more complex than it should be. Moreover, the reliability
goes down along way due to the increased complexity, decreased testability and worse maintainability. This does
not scale. The figure below shows this approach.

Writing Transactional Services
with ExtremeTransactions™

Figure 2.3. Example of a composite application with error logic

B O
I I e ey
SEEEE

2.2.2. Solution 1: ExtremeTransactions™ JTA Support

One way to solve the problem is by making the whole workflow an extended (distributed) JTA transaction. While
this works from atechnical viewpoint, it does not scale outside the enterprise: database |ocks are maintained for
the entire duration of an extended transaction, and this exposes the services to denial-of-service attacks and other
availability hazards. Consequently, this solution is only fit for intra-enterprise cases where there is a centralized

point of control.

Workflow Layer

Examples of this approach are shown in the installation folder of ExtremeTransactions™, under examples/
j2selrmi.

Writing Transactional Services
with ExtremeTransactions™

2.2.3. Solution 2: ExtremeTransactions™ TCC™ Support

With TCC, the workflow logic of a composite application can be reduced to its happy path. All other logic is moved
to the service implementation: the services are now offering both cancel and confirmlogic aswell. Thislogicis
moved out of the workflow (along with al interdependencies), thereby removing all complexity from the workflow
itself. Thisis shown below...

Figure 2.4. TCC: focus on the happy path

Workflow Layer
callC

g J 4 Jd U

Service A Service B Service C Service D Service E
cancel cancel cancel cancel cancel

confirm confirm confirm confirm confirm

At the expense of some additional (and reusable) logic in each service, the workflow is simplified enormously: there
are no more undo calls to model/program, and no dependenciesto take care of. The developers don't have to take
into account all possible failure paths, nor do they have to track where things go wrong and what to do next. All

thisis handled by ExtremeTransactions™. In addition, the failure of undo operationsis no longer aworry of the
application developer: al thisis handled by ExtremeTransactions™.

Writing Transactional Services
with ExtremeTransactions™

Examples of this approach are shown in the installation folder of ExtremeTransactions™, under examples/
j2seltcc.

2.3. The Atomikos™ Try-Confirm-Cancel (TCC™)
API: Distributed Service Transactions Without XA

This API is arevolutionary approach to programming distributed transactional services (which can be
exposed either as web services or as classical RMI/I1OP services). It combines the best of two worlds:

» Theloosely-coupled style of messaging platforms, by supporting asynchronous and long-duration
communication patterns.

» Thereliability guarantees of transactions, by offering the guarantee that a distributed (and possibly
asynchronous) task is either canceled or confirmed in its entirety.

Invented by Atomikos, this approach is new in the way that distributed transactions are structured: instead of
requiring one long ACID transaction that lasts until commit or rollback, TCC™ splits up aweb service transaction
into three distinct phases, each optionally involving separate and short-lived ACID transactions:

The TRY phase: from the viewpoint of a service provider, thisiswhere the normal transactional service reguest
is processed in atentative manner (i.e., subject to later confirmation or cancelation) and in one short local ACID
transaction (which can even be anon-JTA transaction such asin JDBC™). None of the classical distributed and
long-lived locks are required to do this. At the end of this phase, the business logic reflects a tentative result that
will become permanent only after the next phase (either CONFIRM or CANCEL).

The CONFIRM phase: if the overall web service transaction commits, then the TCC™ service implementation
receives a confirmation notification (this corresponds to the commit in the two-phase commit protocol). The
interesting part is that this confirmation may trigger business-level processing to update the tentative business
state to confirmed (again, this update can be a purely local transaction such asin JDBC™). The TCC™
paradigm only requires local updates during this phase: any remote confirmation is done by the protocolsin the
background.

The CANCEL phase: if the overall web service transaction does rollback then the TCC™ service implementation
receives a cancelation notification (this corresponds to the rollback in the two-phase commit protocol). Like

for confirmation, this notification may trigger business-level processing to update the tentative business state

to canceled. Again, only local updates are required; any remote cancelation is done by the protocols in the
background.

Writing Transactional Services
with ExtremeTransactions™

Example2.1. TCC™ example: an airlinereservation web service

Figure 2.5. TCC™ example: airline reservation service

TR ol ,/’7‘
T 8 Sl
== Internet ol
_..=-';"_7______ = .-"R‘“H.;___.
P \; \“\f \'n
(eservation
| System
CANCEL: TRY: INSERT RESERVATION
UPDATE
RESERVATION SET CONFIRM: UPDATE
STATUS="CANCELED"’ — . RESERVATION SET
... = STATUS=‘CONFIRMED’
RESERVATIONS
DATABASE

L i

As an example, consider an airline reservation web service. This service offers online seat reservations that

can be booked in atransactional way. The TRY phase inserts the reservation into the database. Upon commit,

the CONFIRM phase explicitly updates the reservation to being valid. Otherwise, in the event of CANCEL, the
reservation is marked to be canceled; because the business logic is aware that only confirmed reservations should be
taken into account, this achieves transactional consistency in aloosely-coupled way.

2.3.1. Programming TCC™ Applications

The TCC™ paradigm isideal for reservation-style (web) services, where business resources (seats, tickets, ...)
have to be reserved for a short or large period of time until the reservation is confirmed or canceled. Y ou can
view TCC™ as two-phase commit at the business level: the tentative (prepare), canceled (rollback) and confirmed
(commit) states are visible (and known) by the business logic. Tentative transactions are indeed accessible in the
database(s), and should be ignored by the businessif not relevant. The system offers the guarantee that tentative
transactions are temporary, so resources are always released eventually. Indeed, a TCC™ transaction is either
confirmed (if it succeeds) or canceled (if it fails or times out). Either way, the corresponding business logic is
triggered (CONFIRM or CANCEL) to release any business-level resources associated with the tentative state.

The TCC™ API isdefined in the package com at om kos. TCC and implemented by the package
com at oni kos. i cat ch. TCC. See the javadoc and the samples contained in the release for more
details on the TCC™ model.

10

Writing Transactional Services
with ExtremeTransactions™

2.3.1.1. Recommended Pattern for TCC™ Services

The TCC™ paradigm corresponds to two-phase commit at the application level. This means that the likelyhood of
failure during CANCEL or CONFIRM should be minimized (since these correspond to failures during the second
phase of two-phase commit). Therefore, we recommend that your TCC™ services be devel oped along the following
lines:

» TRY: reserve the necessary resources to make CONFIRM succeed. For instance, if you are selling something
then TRY would check and decrement stock availability already, so CONFIRM can't run into availability
praoblems.

e CONFIRM: make the work of TRY permanent, i.e. convert the reservation into a purchase (in the case of
salling).

» CANCEL: release the reserved resources again. In the selling example, this would mean returning the reserved
items to the available stock.

2.3.1.2. Programming the TCC™ Service

TCC™ service implementations should implement the interface com at oni kos. TCC. TCCSer vi ce. This
interface exposes the following methods to implement:

» confirm thelogic associated with confirmation. Implement this method to confirm the reservations made in
thetry- phase.

» cancel : thelogic associated with cancelation. Implement this method to cancel the reservations made in the
try-phase.

e recover : callback for recovery; this method is called by the transaction service when it recovers TCC™
transactions after a crash or restart. Any required system-level resources needed for cancel or confirm can be re-
acquired in this method.

In addition to these termination callbacks (required by the transaction service), it is up to the application itself

to implement the logic for the try-phase. As far as the transaction service is concerned, the try-phase starts when
regi st er iscaled, and ends when one of conpl et ed or f ai | ed isinvoked by the application. An example
TCC™ service implementation is shown below (the complete example isincluded in the demos for the release).

Example 2.2. Example of a TCC™ payment service

package payment;

i mport java. sql.Connecti on;
i mport java.sql.SQLException;
i mport java.sql. Statemnent;

i mport com at om kos. i cat ch. Heur Conmi t Excepti on;

i mport com at om kos. i cat ch. Heur Rol | backExcepti on;
i mport com at om kos. TCC. TCCExcepti on;

i mport com at om kos. TCC. TCCSer vi ce;

i mport com at om kos. TCC. TCCSer vi ceManager ;

11

Writing Transactional Services
with ExtremeTransactions™

public class Payment TCCService inpl enents TCCService
{

private TCCServi ceManager TCCnyr;

private | ong tineout;

publ i ¢ Paynent TCCServi ce (TCCServi ceManager TCCmgr |,
[ong tineout)
{

this. TCCrgr = TCCnyr;

this.timeout = tineout;

/11 MPORTANT: register with the systemfor recovery call backs
//to assist with application-Ilevel recovery of previous
//service invocations

TCCnyr . regi st er For Recovery (this);
}

public void tryPaynent (String cardNo , int anmount)
t hrows Exception

/lstart (register) the work for cancel/confirm
//and obtain the id to use as reference
String id = TCChgr.register (this , timeout);

try {
/[l performthe work (i.e., the business |ogic)

//the application should use the id to

/lidentify the work for later confirm cancel
Connection conn = Payment DbUti | s. get Connecti on();
Statement s = conn.createStatenent();

s.executeUpdate ("insert into PAYMENTS values (" +
"+ gd+ ", """ + cardNo + "' " + ampbunt + "," +
" "PENDING)");

conn. cl ose();
/I mark the work as conpleted in the system
//to trigger the cancel/confirm call backs

TCCnyr . conpl eted (id);

} catch (Exception e) {
e.printStackTrace();
//on any exception: mark the work as failed
//so cancel is the only possible callback
TCCngr.failed (id);
}
}

public void confirm(String id)
t hr ows Heur Rol | backExcepti on, TCCExcepti on
{

12

Writing Transactional Services
with ExtremeTransactions™

try {
Connection conn = Payment DbUti | s. get Connection();

Statement s = conn.createStatenent();
s. execut eUpdate (
"updat e PAYMENTS set status = 'CONFIRVED where key = "" + id +""'");
conn. cl ose();
} catch (SQLException e) {
e.printStackTrace();
//optional: throw TCCException to retry confirmation
t hr ow new TCCException();

}
}

public void cancel (String id)
t hr ows Heur Commi t Excepti on, TCCExcepti on

{

try {
Connection conn = Payment DbUti | s. get Connecti on();

Statement s = conn.createStatenent();

//set status to canceled; alternatively, we could also
//choose to delete the paynent row i nstead; this depends
/1 on the business-specific nodel of cancel ation

s. execut eUpdate (

"updat e PAYMENTS set status = ' CANCELED where key ="'" +id +"'");

conn. cl ose();
} catch (SQLException e) {

e.printStackTrace();

//optional: throw TCCException to retry cancel ation

t hr ow new TCCException();

}
}

public bool ean recover (String id)

//check if the id is one of our work identifiers
//return true if so

The following state diagram illustrates the relevant TCCService states and their transitions.

Theinvocation of cancel or conf i r mare guaranteed to happen only after the try-phaseis over (i.e.,
after the application calls either conpl et ed or f ai | ed).

13

Writing Transactional Services
with ExtremeTransactions™

Figure 2.6. TCCService State Diagram

in this state. Mo The states apply to

one specific id.
callbacks will arrive suspend resume P
between register and
completed/failed

All application-level 5 ded
Iy-work should be done | LS1BPended | Il‘

register | _

. [Trying] | Failed |

falled | entry { work marked for cancel only |

completed completed[timed ouf] T
confirm
| Tentative cancel
cancel
[TecException]
[_E:anﬂ—jrming] [TecException] [Canceling]
cancel Ol
[confirm QK] [“

[HeurCommitException]

Confirmed [HeurRollbackException] Canceled
L

O,

The figure above shows the relevant states for TCC™ instances, and the possible transitions. For clarity, the
transitions initiated by the transaction system are shown in black arrows, whereas the service-generated transitions
are shown in red. More precisely: the black arrows represent method calls that the TCCService instance will receive
upon the transaction service'sinitiative. The relevant states are the following:

» Trying: the TCC™ instance is executing the tentative service implementation. This state is entered after the
application callsr egi st er onthe TCCSer vi ceManager . The transaction service guarantees that there will
be no interleaving calls of cancel or conf i rm Inthisstate, the application's thread is associated with the
activity (this allows easy propagation via the JAX-RPC handlers).

e Suspended: this state is reached when the application's thread is no longer associated with the transaction
(activity). This state is an intermediate state to change the thread association of the application. It is up to the
application to reach this state, by calling suspend on the TCCSer vi ceManager . More information on this
technique will follow later.

» TryFailed: this state is reached after the Trying state fails (indicated by the application calling thef ai | ed
method of the TCCSer vi ceManager). In this state, the transaction service will later call cancel .

» Tentative: this stateis reached only after the Trying phase finishes without errors (as indicating by acall to
conpl et ed onthe TCCServiceManager). Thisisthe only state in which conf i r mcan ever be called, but
only if the global transaction (activity) commits. In case of global transaction rollback, cancel will be called.

e Confirming: theinstance isin this state when conf i r mhas been called and is still executing. If a
TCCExcept i on happens then the TCC™ instance returns to the Tentative state, and conf i r mwill be retried
later.

14

Writing Transactional Services
with ExtremeTransactions™

e Canceling: theinstanceisin this state when cancel hasbeen called and is still executing. If a
TCCExcept i on happens then the TCC™ instance returns to the Tentative state, and cancel will beretried
later.

e Confirmed: if the confirmation is successful (no exceptions) then this state is reached. This state is also reached
when cancel findsthe businesslogic to be heuristicaly confirmed by intermediate database administration
interventions.

e Canceled: if the cancelation is successful (no exceptions) then this state is reached. This state is also reached
when conf i r mfinds the business logic to be heuristically canceled by intermediate database administration
interventions.

What about ther ecover method? Actually, this method is only called for recovered TCC™ instances,
and can only be followed by either cancel or confi r m Theonly thing that r ecover shoulddois
ensurethat cancel and/or conf i r mcan do their work, be re-acquiring any resources if needed. Most of
the time, this method can be left empty. Note that TCC transactions are recoverable as soon as they enter
the TRY phase. This guarantees that pending work is correctly recovered and terminated after a crash or
restart.

2.3.1.3. Executing TCC™ Services

The (tentative, try-phase) execution of TCC™ servicesis started by calling r egi st er onthe

com at oni kos. i cat ch. TCC. User TCCSer vi ceManager , the default implementation of

com at oni kos. TCC. TCCSer vi ceManager . Thismethod returnsaj ava. | ang. St ri ng identifier for the
work; thisidentifier will be used as an argument for termination.

The TCCSer vi ceManager class should be initialized with the appropriate TCCSer vi ce
implementation (provided by the application) before it can be used. Thisis done via an invocation of the
regi st er For Recover y method. For recovery, it is highly recommended that this initialization be done
as soon as possible after startup of the application.

Once registered, it is up to the application to do any work that is subject to transactional termination. For
convenience, the executing thread is associated with the activity (transaction). For remote calls, this allows the
activity to be propagated with the built-in JAXRPC handlers. In case the application wants to switch threads for the
activity, the suspend and r esune methods can be used to manage the thread associations.

As soon as the try-phase is over, the application should call either conpl et ed (if successful) or f ai | ed (if
erroneous) with the correlation identifier returned by r egi st er . For root activities, the entire, possibly distributed
activity isthen terminated in a consistent manner by the underlying transaction service. In other words, the system
calseither cancel or conf i r mon each participating TCCSer vi ce implementation in a consistent way.

15

Writing Transactional Services
with ExtremeTransactions™

Example 2.3. Distributed TCC™ Execution
The following illustration shows a sample distributed TCC™ execution between two transactional services.
Figure 2.7. Distributed TCC™ execution between two transactional services

WEB SERVICE 1 WEB SERVICE 2

:chSer\riceO| |:ch3ervlcelﬂanaggro| | DB1 | |:ch3-erviceo| |:ch3ervicel-'lanaggro| | DB2
|

T
1:id = register(timeout }-I

| >

i

|
2: tentative updates + corpmit

) |
3: call remaote service 4:1d2 := register(timeout)

5: tentative updates T commit

T

|

|

|

| |
I 6: completed(id2)}
|

|

L Tireturn |

8: completed(id) |

:

The following steps are displayed:

1.

The application in service 1 registers with the transaction service. Because there is no pre-existing activity yet,
anew (root) activity is created for this service (not shown). The identifier id is returned for this activity. Service
1 can now perform the try-phase of its work.

First, service 1 chooses to update its local database and commits. The effects become visible to other,
concurrent applications but are still subject to two-phase commit termination of the TCC™ services. In order
to be able to correlate the database updates with the activity, service 1islikely to use the work identifier id asa
(primary) key for its database updates.

As part of itstry-phase, service 1 then choosesto call service 2. The activity is propagated by the handlers. If
done asynchronously, then service 1 may choose to use the work identifier id as a correlation identifier for the
communication.

The handlers at service 2 import the activity, and the call is forwarded to the application (thisis how handlers
work; the application doesn't have to worry about this). The application at service 2 wants to do work that is
subject to TCC™ termination, so it first registers with the (local) transaction service. The application receives
an identifier id2 to refer to the (local part of the) work.

Service 2 can now update its local database to reflect the tentative state of itswork. It islikely that id2 be used
as adatabase identifier to correlate with later cancelation or confirmation. The database updates are committed
immediately, in aloca database transaction.

Service 2 is satisfied with its work and signals to the transaction service that it is ready to confirm when asked
to. Thisis done by caling conpl et ed with the local work identifier id2.

Theresult isreturned to service 1 (if asynchronous, then the correlation identifier id of service 1 can be used).
Service 1 is now also satisfied with its work, and terminates its tentative phase by calling conpl et ed with
its own work identifier id. Since service 1 is executing as the root activity, thiswill trigger completion by the
transaction service (shown in the next examples).

16

Writing Transactional Services
with ExtremeTransactions™

Example 2.4. Distributed TCC™ Prepare

After the root activity is completed in the previous example, the transaction service will ensure consistent
termination with cancel/confirm at all participant services. TCC™ activities can be distributed across nodes and
can take along time to complete. Consequently, parts of the work can time out while waiting for confirmation. To
minimize problems with timeouts, the transaction service will do a prepare-phase (as in two-phase commit) behind
the scenes. Thisis apurely technical step without application-level requirements.

Figure 2.8. Distributed TCC™ prepar e phase

WEB SERVICE 1 WEB SERVICE 2

| : TccServiceManager O| | : TccServiceManager O|
[[

1: prepare?

Votes NO if the
work has timed
out.

17

Writing Transactional Services
with ExtremeTransactions™

Example 2.5. Distributed TCC™ Confirmation
Assuming that the prepare phase succeeded (no timeouts) then confirmation will happen as shown next. The system
uses the registration identifiers of the work to call the application-level conf i r mimplementations. Each service

can use its respective identifier to confirm its changes in the database. This happens in a separate, local database
transaction committed immediately.

Figure 2.9. Distributed TCC™ confirmation phase

WEB SERVICE 1 WEB SERVICE 2

:chServiceManaggro| | : TecService O| | DB1 | | Mﬂﬂ(ﬂ | MO| | bB2
| [[
| | |
| | |
_1: confirm(id) - |

2: confirm updhtes + commit

3: cohfirm(id)

4: confirm(id2)

-

5: update/commit

B

Note the local nature of confirmation: because the transaction service calls the remote parties, each
TCCService implementation only has to confirm its own work locally. Also note that the local identifier is
used to confirm the work at each site.

18

Writing Transactional Services
with ExtremeTransactions™

Example 2.6. Distributed TCC™ Cancelation

In case of one or more timeouts during prepare, cancelation will be done everywhere. Thisis similar to confirmation
except that now cancel iscalled at each participating service.

Figure 2.10. Distributed TCC™ cancelation phase

WEB SERVICE 1 WEB SERVICE 2

: TecServiceManager ()| | iTecService ()| | DB1 | | iTccServiceManager ()| | :TecService ()| | DB2
| | |
| | [
| | [
| 1: cancel(id)) I
[

2: UNDO updatgs + commit

3: cancel(id) |

4: cancel(id2)

5 UNDC/commit

19

Writing Transactional Services
with ExtremeTransactions™

Example 2.7. Distributed TCC™ Failure

A failureisan error in the tentative logic (in the try-phase). A service should call failed (with its work identifier)
whenever it encounters an error from which it can't recover. Thiswill make sure that the transaction service forbids
confirmation of (the relevant parts of) the work and calls cancel instead. Thisis shown next.

Figure 2.11. Distributed TCC™ failure

WEB SERVICE 1 WEB SERVICE 2

: TecService O| | :chServiceManaggrO| | : TecService O| | :chServiceManaggrO| | DB2
: 1:id:=regi51er(timeout}__: |

I
| |
| |
| |
| |
2: call remote service 1 3:1d2 := register(imeout) |

4: FAILURE/ROLLBACK T

|

|

|

|

| f

| 5: failed(id2) J
| [

|

|

|
| call)
. alling failed
e — — — — — — — [_ﬁ;retﬂrnfrro_r __________ | makes sure that
|

— — —L7|nolater confirm is
T possible, and also

7. try alternative service | T | cancels all work of

the failed call.
i T | B: cangel(id2)
The client service can call an

alternative service and still
| complete.

In this example, service 2 encounters afatal error and callsf ai | ed to indicate that its part of the work (and any
transactional callsthat service 2 may have made) should be canceled.

Note that service 1 is till allowed to try an alternative service and complete. This means that failed remote calls
don't have to lead to global failure of the entire activity.

2.3.1.4. TCC™ and Subtransactions

Whenr egi st er iscalled without an existing transaction (activity), the system wil create aroot activity. On the
other hand, if an activity already exists (for instance, an imported one) then a subtransaction (or subactivity) will be
created instead.

Calling conpl et ed has adifferent effect for root activities versus subactivities:

» For root activities, calling conpl et ed will trigger the distributed confirmation process and lead to the
consistent invocation of either conf i r mor cancel for each participating service.

» For subactivities (e.g., imported activities), conpl et ed will merely mark the activity ist ent at i ve;itisup
to the root to trigger the final confirmation or cancelation.

20

Writing Transactional Services
with ExtremeTransactions™

2.3.1.5. Failures During Confirmation or Cancelation

A well-known problem with compensation-based approaches is what to do when compensation fails (the same can
be said of confirmation). Asthe TCC™ state diagram shows, there are two possible ways of failure:

A TCCExcept i on isthrown. In this case the transaction service will retry thecancel (orconfirma
number of times. If this eventually works then there is no problem. Otherwise, the transaction service will
eventually give up and make the transaction fail with a heuristic hazard error. This means that the transaction
information stays in thelogs and is available for manual intervention. One of the patent-pending features of
ExtremeTransactions™ is the detailed application-level information available in this case.

e A heuristic exception is thrown. This signals that an intermediate administrative intervention has already
terminated the TCC™ process in an incompatible way. Thisisafatal error condition, because at least part of
the global transaction did not terminate the way it was supposed to. This again leads to a heuristic error for the
overall transaction, and the information will be available in the logs for manual resolution.

2.3.2. Compatible Protocols

TCC™ service implementations are compatible with the following protocols:
» The Atomikos™ web service transaction protocol.
e The Atomikos™ binary RMI-110P protocol.

Any transaction imported via one of these protocols will automatically be available for you TCC™ service (i.e.,
confirm or cancel of your TCC™ service will be linked with the two-phase commit of the overall transaction).

21

Chapter 3. Configuring
ExtremeTransactions™ Behaviour

The configuration of ExtremeTransactions™ is very similar to TransactionsEssentials™, with some extra
parameters and values to set. This chapter discusses each parameter in turn. These parameters relate to the
transactions.properties file in your classpath.

3.1. Enabling ExtremeTransactions™

The parameter com at omi kos. i cat ch. servi ce must be set to
com at onmi kos. i catch.trm . User Transacti onServi ceFact ory in order to make sure that
ExtremeTransactions™ is enabled.

3.2. RMI-JRMP Configuration

If you plan to use RMI-JRMP as the protocol for calling your services, then you should set the following parameters.
e com atom kos.icatch.rm _export_cl ass: setthistovalueUni cast Renot eCbj ect .

* java.naming.factory.initial:setthistotheINDI initial context factory of your
JNDI service. ExtremeTransactions™ needs a JNDI registry to store references to remote
transaction objects it creates and exposes during its operation. The recommended valueis
comsun.jndi.rm.registry. Regi stryCont ext Fact ory (the JNDI included in the Java
installation).

e java.nani ng. provider. url : setthisto the corresponding JNDI provider address. If you set the
recommended factory above, then the URL will most likely bermi : / /1 ocal host : 1099 - athough the port
1099 may be different for your system (depending on your configuration).

The RMI registry needs to be started separately, before you launch your service. Otherwise, startup will
fail. To start it, just typer mi r egi st ry inacommand shell.

3.3. RMI-IIOP Configuration

If you plan to use RMI-110OP as the protocol for calling your services, then you should set the following parameters.
e com atomi kos.icatch.rm _export_cl ass: setthistovalue Por t abl eRenot ebj ect .

 java.naming.factory.initial:setthistotheINDI initial context factory of your
JNDI service. ExtremeTransactions™ needs a JNDI registry to store references to remote
transaction objects it creates and exposes during its operation. For 11OP, the recommended valueis
com sun. j ndi . cosnani ng. CNCt xFact or y (the CORBA JNDI included in the Javainstallation).

e java.nani ng. provider. url : set thisto the corresponding JNDI provider address. If you set the
recommended factory for I1OP above, then the URL will most likely bei i op: / /1 ocal host: 1050 -
although the port 1050 may be different for your system (depending on your configuration).

22

Configuring
ExtremeTransactions™ Behaviour

The CORBA naming service (used as JNDI registry in this case) needs to be started separately, before you
launch your service. Otherwise, startup will fail. To start it, just typet naneserv - ORBI ni ti al Port
1050 in acommand shell.

3.4. Disabling RMI

If you don't need RMI services (because, for instance, you want to use SOAP) then you can avoid the overhead of
having to start the registries by settingcom at omi kos. i catch. rm _export _cl ass tonone.

3.5. Setting Client Trust Preferences

If you trust client servicesto control the administrative aspect of your transactions then set
com at oni kos. i catch.trust_client_t mtotrue. Thiswill ssimplify administration of problematic in-
flight transactions at the expense of giving up some control to the client (transaction) service.

Another aspect of client trust is whether you want remote (non-service) clients to be able to start and commit
transactions. This can be indicated by settingcom at om kos. i catch. cli ent _demarcati ontotrue.

3.6. Enabling Web Service Transactions

Web service transactions can be enabled by doing the following:

» Settheinitialization parameter com at omi kos. i cat ch. soap_conmi t _pr ot ocol s toat om kos.
Thiswill trigger startup and export of the SOAP two-phase commit endpointsin your web service VM.

e Settheinitialization paramater com at omi kos. i cat ch. soap_host _addr ess to the DNS hostname of
the machine where your web service is running. This setting is optional in case the default 1P address guessed by
ExtremeTransactions™ does not work.

» Settheinitialization parameter com at omi kos. i cat ch. soap_port tothe port number where
you want two-phase commit to take place. Thisis optional and only needed if the default guessed by
ExtremeTransactions™ does not work.

e Onthe server (receiving) side: add an instance of
com at om kos. i catch. jaxws. at om kos. | nporti ngTransacti onHandl er tothe handler
chain of the web service.

» Ontheclient side, add an instance of
com at omi kos. i cat ch. j axws. at om kos. Exporti ngTransact i onHandl er to the endpoint of
the service you are going to call.

Web service transactions are supported according to the Atomikos (native) protocol for two-phase commit across
web services (http://www.atomikos.com/schemas/2005/10/transactions/atomikos.wsdl). Transactions can span
multiple web service invocations provided that all nodes are configured as outlined here.

Example 3.1. Configuring the ImportingTransactionHandler on thereceiving side

Adding ahandler to the server (receiver) sideisdone like thisin JAX- W5:

23

Configuring
ExtremeTransactions™ Behaviour

package com at om kos. deno. j axws. server;
i mport java.util.List;

i mport javax.xm .ws. Endpoi nt;
i mport javax.xm .ws. handl er. Handl er

i mport com at om kos. deno. j axws. i npl . WebShop
i mport com atom kos.icatch.jta. UserTransacti onManager
i mport com atom kos.icatch.jaxws. at om kos. | mporti ngTransacti onHandl er

public class Server {

public static void main(String[] args) throws Exception {
User Transact i onManager utm = new User Tr ansacti onManager () ;
utminit();

Endpoi nt endpoi nt = Endpoi nt. create(new WebShop());
Li st <Handl er > chai n = endpoi nt. get Bi ndi ng() . get Handl er Chai n() ;

/lincom ng requests are intercepted by an

/1 Atom kos handler to deal with transaction aspects

I mporti ngTransacti onHandl er handl er = new | nmporti ngTransacti onHandl er () ;
[/ dependi ng on the inportPreference,

/la new tx may be created for the incom ng cal

/ljust like in regular JEE

handl er. set | nport Pref erence(" Required");

/I new transactions tine out when? (ml!liseconds)

handl er. set NewTr ansacti onTi meout (10000);

//should newly created transacti ons be JTA-1ike or TCC-I|ike?
handl er . set Jt aConpati bl e(true);

//when a heuristic tineout happens, commt or roll back?
handl er . set Conmi t OnHeur i sti cTi meout (true);

chai n. add(handl er) ;

endpoi nt. get Bi ndi ng() . set Handl er Chai n(chai n);
endpoi nt. publish("http://0.0.0.0: 8888/ shop");

Systemout.println("server started");

while (true) {
Thr ead. sl eep(1000);

if (1 ==2)
br eak;
}
utm cl ose();
}

24

Configuring
ExtremeTransactions™ Behaviour

This handler class takes care of extracting any transaction context present in the incoming calls, and registers for
the final (global) transaction outcome as controlled by the client. For the complete code, please see the JAX- W5
example included in the download.

Example 3.2. Configuring the ExportingTransactionHandler on the client side

Adding a handler to the client (sender) side is done like thisin J AX- W5:

i mport java.util.List;

i mport javax.xm .ws. Bi ndi ng;

i mport javax.xm .ws. Bi ndi ngProvi der;
i mport javax.xm .ws. handl er. Handl er;

i mport com at omi kos. deno. j axws. i npl . WebShop;
i mport com at omi kos. deno. j axws. i npl . WebShopSer vi ce;
i mport com at omni kos. i cat ch. j axws. at onmi kos. Exporti ngTransacti onHandl er;

public class dient {
public static void main (String[] args) throws Exception {
WebShop shop = new WebShopServi ce(). get WebShopPort () ;
Bi ndi ng bi ndi ng = ((Bi ndi ngProvi der) shop). get Bi ndi ng();
Li st <Handl er> handl er Li st = bi ndi ng. get Handl er Chai n() ;
handl er Li st. add (new ExportingTransactionHandl er());
bi ndi ng. set Handl er Chai n (handl erList);

/1 now, any calls nade to the shop will be done in
/1 the existing transaction context, if any...

For the complete code, please see the JAX- W5 exampl e included in the download.

25

Chapter 4. Mistaken Alternatives for
ExtremeTransactions™

Y ou may wonder if there isreally aneed for ExtremeTransactions™ in your case. It really depends on what you
want, but if you have a service whose effects may time out or need to be canceled on request then you really need
this technology. This chapter discusses some perceived aternatives and shows why they are insufficient.

4.1. Exposing Cancel Operations as a Business
Service

A technique that is often suggested is exposing the cancel (or confirm) operations as separate business services, to
be invoked by a client who wants to cancel (confirm) a previous service invocation. This technique is inappropriate
for the following reasons:

» ltrequirestheclient to explicitly construct the right cancelation call. This may be simple for trivia cases, but if
you have complex workflows then this quickly becomes error-prone and it doesn't scale. Our approach alows
clients to concentrate on the positive logic; all the rest is transparently offered by the transaction service. This
reduces client complexity by at least 66 percent, without even counting all the 'transaction management' code
that you don't have to write and maintain yourself.

» Itimpliesthat the client must persistently track each service's state: the client must be able to cancel pending
services even after restarts or crashes. Otherwise, the number of 'pending’ services will soon rise exponentialy,
and so will al related costs. In our approach, al of thisis handled by the transaction service.

» Itimpliesthat you trust the client(s) to keep your own business logic consistent. Thisisinappropriate in a
loosely-coupled and federated services world.

» Time-out isdifficult to handle, because you don't have the necessary context (and even if you do then it is hard
to deal with interleaving of timeout and incoming confirmations, leading to many anomal ous transactions with a
high administration cost).

» Issueing and receiving cancel notifications at the application-level may be problematic: for some communication
means (such as IMS™), the order of messagesis not guaranteed. This means that in the do-it-yourself approach
cancel messages may arrive before the request they are meant to cancel. This means that cancel events are
effectively lost. ExtremeTransactions™ avoid this problem.

The only case where this technique really works is when you don't care about time-out and consistency. This
applies only to businesses where cancelation is 'just another business transaction’ (like buying and later selling
stock). For businesses based on the 'reservation' concept, this technique is entirely inadequate.

4.2. Using Reliable Messaging

Reliable messaging by itself is agreat technology, but not adequate for reservation-based business models. The
notion of cancelation is not really compatible with the usual ‘fire-and-forget’ mechanism offered by these messaging
platforms. Moreover, reliable messaging doesn't solve the problem of timed-out (tentative, unconfirmed) business
transactions. We see reliable messaging as complementary to ExtremeTransactions™ technology.

26

Appendix A. Glossary

ACID: Atomic, Consistent, Isolated and Durable - the classical properties that are enforced on transactions.

CORBA: Common Object Request Broker Architecture - a standard architecture for building distributed systems.
Outdated with the advent of Java, SOA and web services (SOAP).

GRID: an architecture for massive scaling, where multiple equivalent instances of a service or application are
deployed on a number of independent hardware servers.

I1OP: Internet Inter-Orb Protocol - the communication protocol for RPC in CORBA. Also used in JEE.
JAX-RPC: an outdated API for developing web servicesin Java.
JAX-WS: the current API for developing web servicesin Java.

JDBC: Java Database Connectivity - the standardized API for accessing relational databases from within Java
programs.

JDK: Java Development Kit - the set of development tools required to build Java applications.

J(2)EE: Java, Enterprise Edition - the Java libraries and extensions (to the JDK) required to support enterprise
applications.

JMS: Java Message Service - the standardized API for accessing messaging back-ends from within Java
programs.

JTA: Java Transaction APl - the standardized API for demarcating ACID transactions from within Java
programs.

JRMP: Java Remote Method Protocol - the original protocol used for RMI in Java (later on, I1OP was added as
well).

RMI: Remote Method Invocation - a soft of "RPC for distributed objects”, one of the core technologiesin
J(2)EE.

RPC: Remote Procedure Call - away of calling other processes transparently (by hiding the network from the
caller).

OA: Service-Oriented Architecture - away of developing software as a set of reusable services (available on the
network).

SOAP: Simple Object Access Protocol - a standardized way of encoding RPC-like calls as XML (used for web
services).

TCC: Try-Cancel/Confirm - anew way of providing transactional services, provided by Atomikos.

VM: Virtual Machine - the runtime environment of a Java application.

web services: services accessible on the network via SOAP.

XA: Extended Architecture - astandardized API for co-ordinating ACID transactions across backend systems.

XTP: Extreme Transaction Processing - an architecture for processing high volumes of mission-critical
transactions on commodity infrastructure. As explained by numerous Gartner™ reports, J(2)EE application
servers are not suited for this; something new is needed like ExtremeTransactions™.

27

Appendix B. More Information

» TCC: Try-Confirm/Cancel Transactions for Web Services
Available online at http://www.atomikos.org/forums/viewtopic.php?=97
» The WS-Transaction Standardization Committee

See http://www.0asi s-open.org/committees/tc_home.php2wg_abbrev=ws-tx (information about WS-
Coordination, WS-AtomicTransaction and WS-BusinessActivity)

» JAX-RPC: http://java.sun.com/webservices/jaxrpc
o JAX-WS https.//jax-ws.dev.java.net

« JTA: The Java Transaction APl specifies the interfaces towards a transaction manager from within a Java
program. More information on http://java.sun.com/products/jta

» XA Specification: Published by the Open Group (http://www.opengroup.org), available online via the website.

28

